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Abstract. We compute the integral p-adic étale cohomology of
Drinfeld symmetric spaces of any dimension. This refines the
computation of the rational p-adic étale cohomology from [10].
The main tools are: the computation of the integral de Rham
cohomology from [10] and the integral p-adic comparison theo-
rems of Bhatt-Morrow-Scholze and Česnavičius-Koshikawa which
replace the quasi-integral comparison theorem of Tsuji used in
[10]. Along the way we compute Ainf -cohomology of Drinfeld
symmetric spaces.
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1. Introduction

Let p be a prime number, K a finite extension of Qp, and C the p-adic
completion of an algebraic closure K of K. Drinfeld’s symmetric space
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grant No. DMS-1440140.
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of dimension d over K is the rigid analytic variety

HdK := PdK \ ∪H∈H H,

where H is the space of K-rational hyperplanes in Kd+1. It is equipped
with an action of G = GLd+1(K). One of the main results of [10] is
the description of the G × GK-modules Hi

ét(HdC ,Qp(i)), where HdC :=

HdK ⊗K C and GK = Gal(K/K). The analogous result for `-adic étale
cohomology, ` 6= p, is a classical result of Schneider and Stuhler [21].
It relies on the fact that `-adic étale cohomology satisfies a homotopy
property with respect to the open ball (a fact that is false for p-adic étale
cohomology).

The goal of this paper is to refine our result, by describing the integral
p-adic étale cohomology groups Hi

ét(HdC ,Zp(i)). Recall that, for i ≥ 0,
there is a natural generalized Steinberg representation Spi(Zp) of G (see
Section 4.1 for the precise definition). We endow it with the trivial action
of GK and we write Spi(Zp)

∗ for its Zp-dual.
The main result of this paper is the following:

Theorem 1.1. For i ≥ 0, there are compatible topological isomorphisms
of G× GK-modules

Hi
ét(HdC ,Zp(i)) ' Spi(Zp)

∗, Hi
ét(HdC ,Fp(i)) ' Spi(Fp)

∗,

compatible with the isomorphism Hi
ét(HdC ,Qp(i)) ' Spi(Zp)

∗ ⊗Zp Qp

from [10]. In particular, for i > d these cohomology groups are trivial.

Remark 1.2. (i) If d = 1 and i = 1, this result is due to Drinfeld [11]
(with a shaky proof corrected in [13]; see also [9, Th. 1.7]).

(ii) In [8], the étale cohomology with compact support of many p-adic
period domains is computed. The methods are very different from the
ones used in the present paper: they avoid p-adic Hodge theory, follow
Orlik’s `-adic computations [20], for ` 6= p, and use computations of Ext
groups between mod p representations of groups like G. This includes
the case of HdC for which the result reads as follows:

Hi
ét,c(HdC ,Z/pn) ' Sp2d−i(Z/p

n)(d− i), p ≥ 5,

as G× GK-modules.
(iii) Hence étale cohomology and étale cohomology with compact sup-

port of HdC are in abstract duality

Hi
ét,c(HdC ,Z/pn) ' H2d−i

ét (HdC ,Z/pn)∗(−d)

as G × GK-modules. However, there is no known Poincaré duality for
spaces like HdC that would explain this abstract duality and would allow
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to recover the results of this paper from the computation of the coho-
mology with compact support. In fact, computations with some basic
analytic spaces like the unit ball show that there is no naive Poincaré
duality for general p-adic rigid analytic spaces.

Étale cohomology and Ainf-cohomology. We will describe now the key
ideas and difficulties occurring in the proof of Theorem 1.1. As in [10,
Sec. 5.1, Sec. 6.2], a key input is the pro-ordinarity of the standard
semistable formal model XOK

of HdK , a result due to Grosse-Klönne [14].
More precisely, he proved that

(1.3) Hi(XOK
,ΩjXOK

) = 0, i ≥ 1, j ≥ 0,

where Ω•XOK
is the logarithmic de Rham complex of XOK

over OK (for
the canonical log-structures of XOK

and OK). One easily infers from this
that XOK

is ordinary in the usual sense [10, Sec. 6.2]. The strongest (and
easiest) integral p-adic comparison theorems are available for ordinary
varieties, making it natural to try to adapt them to XOK

. Nevertheless,
the fact that XOK

is not quasi-compact seems to be a serious obstacle in
implementing the usual strategy [3, Ch. 7] to our setup. The syntomic
method, suitably adapted [10], works well only up to some absolute
constants, and reduces the computation of Hi

ét(HdC ,Qp(i)) to that of the
(integral) Hyodo-Kato cohomology of the special fiber of XOK

, which
was done in [10]. The latter computation can be done integrally and
also shows that the de Rham cohomology of XOK

is p-torsion-free.
The results of Bhatt-Morrow-Scholze [5] (adapted to the semistable

reduction setting by Česnavičius-Koshikawa [7]) show that, for proper
rigid analytic varieties with semistable reduction, if the de Rham coho-
mology of the semistable integral model is p-torsion free (equivalently,
if the integral Hyodo-Kato cohomology of the special fiber is p-torsion
free) so is the p-adic étale cohomology of the generic fiber. Combined
with [10] and with the rigidity of G-invariant lattices in Spi(Qp) (a re-
sult due to Grosse-Klönne [17]), this would yield our main result. The
problem is that the proofs in [5] and [7] rely on the properness of the
varieties and it is not clear how to adapt them to our context. However,
the key actor in loc. cit. makes perfect sense: the Ainf -cohomology. One
then needs a way to read the p-adic étale cohomology in terms of the
Ainf -cohomology, which can be done even for non quasi-compact vari-
eties thanks to a remarkable (especially due to its simplicity!) formula
in [6] (the way p-adic étale cohomology and Ainf -cohomology are related
in [5] is rather different and does not seem to be very useful in our case).
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This reduces the proof of our main theorem to the computation of the
Ainf -cohomology.

More precisely, let Ainf = W (O[
C) be Fontaine’s ring associated to C.

The choice of a compatible system of primitive p-power roots of unity
(ζpn)n gives rise to an element µ = [ε] − 1 ∈ Ainf (where ε corresponds
to (ζpn)n under the identification O[

C = lim←−x 7→xp
OC). This, in turn,

induces a modified Tate twist M →M{i} := M ⊗Ainf
Ainf{i}, i ≥ 0, on

the category of Ainf -modules, where Ainf{1} := 1
µAinf(1) ⊂ W (C[)(1),

Ainf{i} := Ainf{1}⊗i. Let X = HdC and X = XOK
“⊗OK

OC . Using the
projection from the pro-étale site ofX to the étale site of X and a relative
version of Fontaine’s construction of the ring Ainf , one constructs in [5],
[7] a complex of sheaves of Ainf -modules AΩX on the étale site of X,
which allows one to interpolate between étale, crystalline, and de Rham
cohomology of X and X.

The technical result we prove is then:

Theorem 1.4. For i ≥ 0, there is a topological ϕ−1-equivariant isomor-
phism of G× GK-modules

Hi
ét(X, AΩX{i}) ' Ainf“⊗ZpSpi(Zp)

∗.

Theorem 1.1 is now obtained from this and the description of p-adic
nearby cycles in [6] in terms of AΩX (a twisted version of the Artin-
Schreier exact sequence): an exact sequence
(1.5)

0→
Hi−1

ét (X, AΩX{i})
(1− ϕ−1)

→ Hi
ét(X,Zp(i))→ Hi

ét(X, AΩX{i})ϕ
−1=1 → 0.

Proof of Theorem 1.4. We end the introduction by briefly explaining
the key steps in the proof of Theorem 1.4. Fix i ≥ 0 and write for
simplicityM = Hi(X, AΩX{i}). This is an Ainf -module, which is derived
ξ̃-complete, for ξ̃ = ϕ(µ)/µ.

In the first step, we interpret (following Schneider-Stuhler [21] and
Iovita-Spiess [18]) Spi(Zp)

∗ as a suitable quotient of the space of Zp-
valued measures on H i+1 (recall that H is the space of K-rational
hyperplanes in Kd+1). This allows us to construct an étale regulator
(an "integration of étale symbols") map

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i))

which induces a regulator map

(1.6) rinf : Ainf“⊗Zp
Spi(Zp)

∗ → Hi
ét(X, AΩX{i}).

To prove that rinf is an isomorphism we use the derived Nakayama
Lemma: since both sides of (1.6) are derived ξ̃-complete it suffices to
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show that rinf is a quasi-isomorphism when reduced modulo ξ̃ (in the
derived sense). That is, that the morphism

rinf ⊗L IdAinf/ξ̃
:

(Ainf“⊗Zp
Spi(Zp)

∗)⊗L
Ainf

(Ainf/ξ̃)→ Hi
ét(X, AΩX{i})⊗L

Ainf
(Ainf/ξ̃)

is a quasi-isomorphism. To compute the naive reduction rinf modulo ξ̃
of (1.6) we use the Hodge–Tate specialization of AΩX, which identifies
Hi(AΩX/ξ̃) with the (twisted) sheaf of i’th logarithmic differential forms
on X. And, globally, those are well controlled by the acyclicity result
(1.3). Combined with a compatibility between the étale and the Hodge–
Tate Chern class maps and the Hodge–Tate specialization this implies
that rinf is isomorphic to the Hodge–Tate regulator

rHT : OC“⊗Zp
Spi(Zp)

∗ → H0
ét(X,Ω

i
X).

And this we have shown to be an isomorphism in [10].
Along the way we also compute that the target Hi

ét(X, AΩX{i}) of
rinf is ξ̃-torsion free. Since the domain Ainf“⊗Zp

Spi(Zp)
∗ of rinf is also

ξ̃-torsion free this shows that rinf ⊗L IdAinf/ξ̃
' rinf and hence, by the

above, it is a quasi-isomorphism, as wanted.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, for hospi-
tality during Spring 2019 semester when parts of this paper were written.
We would like to thank Bhargav Bhatt for suggesting that derived com-
pletions could simplify our original proof (which they did !). We thank
Kęstutis Česnavičius and MatthewMorrow for helpful discussions related
to the subject of this paper. Last but not least, we thank the referees
for a very careful reading of the paper and many corrections/suggestions
that we have incorporated into the final exposition.

Notation and conventions. Throughout the paper p is a fixed prime.
The field K is a finite extension of Qp with the ring of integers OK and
the residue field k; the field C is the p-adic completion of an algebraic
closure K of K.

All formal schemes are p-adic and locally of finite type (over spec-
ified bases). A formal scheme over OK is called semistable if, locally
for the Zariski topology, it admits étale maps to the formal spectrum
Spf(OK{X1, . . . , Xn}/(X1 · · ·Xr − $)), 1 ≤ r ≤ n, where $ is a uni-
formizer ofK. We equip it with the log-structure coming from the special
fiber.

If A is a ring and f ∈ A is a non zero-divisor and T ∈ D(A), we will
often write T/f for T ⊗L

A A/f if there is no confusion.
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2. Preliminaries

2.1. Derived completions and the décalage functor.

2.1.1. Derived completions. We will need the following derived version
of completeness

Definition 2.1. ([24, 091S]) Let I be a finitely generated ideal of a ring
A. We say that M ∈ D(A) is derived I-complete if, for all f ∈ I, we
have

holim(· · · →M
f→M

f→M
f→M) = 0.

Let A be a ring and let I ⊂ A be a finitely generated ideal. We list
the following basic properties of derived completeness [24, 091N]:

(1) Let M be an A-module. If M is classically I-complete, i.e.,
the map M → lim←−n

M/InM is an isomorphism, then M is also

derived I-complete [24, 091R]; the converse is true if M is I-
adically separated [24, 091T]

(2) (a) The collection of all derived I-complete A-complexes forms
a full triangulated subcategory Dcomp(A, I) of D(A) [24,
091U].

(b) The inclusion functor Dcomp(A, I) → D(A) has a left ad-
joint, i.e., given an object M of D(A) there exists a map
M 7→ M̂ of M into a derived complete object of D(A) such
that the map HomD(A)(M̂,E) → HomD(A)(M,E) is bijec-
tive whenever E is a derived complete object of D(A) [24,
091V]. The object M̂ is called the derived I-completion1 of
M .

(3) M ∈ D(A) is derived I-complete if and only if so are its coho-
mology groups Hi(M), i ∈ Z [24, 091P].

(4) (Derived Nakayama Lemma) A derived I-complete complexM ∈
D(A) is 0 if and only if M ⊗L

A A/I ' 0 [24, 0G1U].
(5) If I is generated by x1, ..., xn ∈ A, then M ∈ D(A) is derived I-

complete if and only if M is derived (xi)-complete for 1 ≤ i ≤ n
[24, 091V].

(6) If f is a morphism of ringed topoi, then the functor Rf∗ com-
mutes with derived completions [24, 0A0G].

2.1.2. The Berthelot-Deligne-Ogus décalage functor. For any ring A and
any non zero-divisor f ∈ A there is a functor Lηf : D(A)→ D(A) (which

1The terminology here is misleading. In general, the derived I-completion is not
given by M 7→ holimn(M ⊗L

A A/I
n), as one would naturally guess.
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in general is not exact) with the key property [5, Lemma 6.4] that there
is a functorial isomorphism2

Hi(Lηf (T )) ' Hi(T )/(Hi(T )[f ]),

whereM [f ] := {x ∈M | fx = 0}. Concretely, choose a representative T •

of T ∈ D(A) such that T i[f ] = 0 for all i, and consider the sub-complex
ηf (T •) ⊂ T •[1/f ] defined by

ηf (T •)i = {x ∈ f iT i| dx ∈ f i+1T i+1}.

Up to a canonical isomorphism, its image Lηf (T ) in D(A) depends only
on T .

We list the following properties of the above construction (sometimes
extended to ringed topoi; in this case one needs to be careful when
dealing with derived completions and assume that the involved topoi are
replete):

(1) Lηf commutes with truncations [5, Cor. 6.5] and with restriction
of scalars3 [5, Lemma 6.14]. Moreover,

Lηf (Lηg(T )) ' Lηfg(T )

for f, g ∈ A non zero-divisors and T ∈ D(A) [5, Lemma 6.11].
(2) For all T ∈ D(A), we have Lηf (T )[1/f ] ' T [1/f ] and there is a

canonical quasi-isomorphism

Lηf (T )/f = Lηf (T )⊗L
A A/f ' (H∗(T/f), βf ),

where (H∗(T/f), βf ) is the Bockstein complex equal to Hi(T⊗L
A

(f iA/f i+1A)) in degree i, the differential being the boundary
map associated to the triangle

T ⊗L
A (f i+1A/f i+2A)→ T ⊗L

A (f iA/f i+2A)→ T ⊗L
A (f iA/f i+1A).

This is discussed in [5, Chapter 6] and [4, Lemma 5.9].
(3) (a) If T → L → M is a distinguished triangle in D(A), then

Lηf (T ) → Lηf (L) → Lηf (M) is also a distinguished trian-
gle if the boundary map Hi(M/f) → Hi+1(T/f) is the 0

map for all i [4, 5.14].

2Depending on f , not only on the ideal fA. If we want to avoid this, the "correct"
isomorphism is

Hi(Lηf (T )) ' (Hi(T )/Hi(T )[f ])⊗A (f i),

where (f i) ⊂ A[1/f ] is the fractional A-ideal generated by f i.
3The latter means that α∗(Lηα(f)(M)) ' Lηf (α∗M) for M ∈ D(B) and α : A→

B a map of rings such that α(f) ∈ B is a non zero-divisor.
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(b) For a non zero-divisor g ∈ A and a T ∈ D(A), the natu-
ral map Lηf (T )/g → Lηf (T/g) is a quasi-isomorphism if
H∗(T/f) has no g-torsion [4, 5.16].

(4) If I ⊂ A is a finitely generated ideal in a ring A and if T ∈ D(A)

is derived I-complete, then so is Lηf (T ) [4, Lemma 5.19]. Let T
be a replete topos and let I ⊂ OT be an invertible ideal sheaf.
If K ∈ D(OT ) is derived I -complete, then so is LηI (K) [5,
Lemma 6.19].

(5) If T ∈ D[0,d](A) and H0(T ) is f -torsion-free then there are natu-
ral maps Lηf (T )→ T and T → Lηf (T ) whose compositions are
fd. More precisely, if T • is a representative concentrated in de-
grees 0, . . . , d and with f -torsion-free terms, then the first map is
induced by ηf (T •) ⊂ T •. Multiplication by fd on each of the two
complexes factors over this inclusion map. When T ∈ D≥0(A),
we will refer to the map Lηf (T )→ T as the canonical map.

2.2. The complexes AΩX and Ω̃X.

2.2.1. Fontaine rings. Let

O[
C := lim←−

x 7→xp

OC ' lim←−
x 7→xp

OC/p

be the tilt of OC (so that C[ = Frac(O[
C) is an algebraically closed field

of characteristic p). Let Ainf = W (O[
C) and choose once and for all a

compatible sequence (1, ζp, ζp2 , ...) of primitive p-power roots of 1, giving
rise to ε = (1, ζp, ζp2 , ...) ∈ O[

C . Letting ϕ be the natural Frobenius
automorphism of Ainf , define

µ := [ε]− 1, ξ :=
µ

ϕ−1(µ)
=

[ε]− 1

[ε1/p]− 1
∈ Ainf .

The natural surjective map O[
C → OC/p lifts to a map θ : Ainf → OC

with kernel generated by ξ; the map θ, in turn, lifts to a map θ∞ : Ainf →
W (OC) with kernel generated by µ (however, contrary to θ, θ∞ is not
always surjective, see [5, Lemma 3.23]). The kernel of the twisted map
θ̃ := θϕ−1 : Ainf → OC is generated by

ξ̃ := ϕ(ξ) =
ϕ(µ)

µ
=

[εp]− 1

[ε]− 1
.

We have θ̃(µ) = ζp − 1.
We list the following properties [4, 2.25].

(1) ξ̃ modulo µ is equal to p.
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(2) Since Ainf and its reduction mod p are integral domains and
since ξ, ξ̃, µ are not 0 modulo p, (p, ξ), (p, ξ̃), (p, µ) are regular
sequences, and so is the sequence (ξ̃, µ).

(3) The ideals (p, ξ), (p, ξ̃), and (ξ̃, µ) define the same topology on
Ainf .

The above constructions naturally generalize to the case when OC is
replaced by a perfectoid ring.

2.2.2. Modified Tate twists. The compatible sequence of roots of unity
(ζpn)n gives a trivialization Zp(1) ' Zp, and we will write ζ = (ζpn)n
for the corresponding basis of Zp(1). By Fontaine’s theorem [12], the
OC-module

OC{1} := Tp(Ω
1
OC/Zp

)

is free of rank 1 and the natural map dlog : µp∞ → Ω1
OC/Zp

induces an
OC-linear injection

dlog : OC(1)→ OC{1}, dlog(ζ) = (dlog(ζpn))n≥1.

The OC-module OC{1} is generated by

ω :=
1

ζp − 1
dlog(ζ),

thus the annihilator of coker(dlog) is (ζp−1). For any OC-moduleM , let
M{1} := M ⊗OC

OC{1}, and we will often write m{1} for the element
ofM{1} corresponding to m ∈M (in particular, a{1} = a ·ω in OC{1}).

Finally, define

Ainf{1} :=
1

µ
Ainf(1) ⊂W (C[)(1),

and let a{1} = 1
µa(1) ∈ Ainf(1), if a ∈ Ainf . The Frobenius ϕ on

W (C[)(1) induces an isomorphism

ϕ : Ainf{1}
∼→ (1/ξ̃)Ainf{1}.

Its inverse defines a map

ϕ−1 : Ainf{1} → Ainf{1}.

There is a natural map

θ̃ := θ ◦ ϕ−1 : Ainf{1} → OC{1}

sending a{1}, for a ∈ Ainf , to θ(ϕ−1(a))ω.
If M is an Ainf -module, let M{i} := M ⊗Ainf

Ainf{1}⊗i, i ∈ Z. The
map θ̃ : Ainf{1} → OC{1} induces a map θ̃ : M{1} → (M/ξ̃){1} of
Ainf -modules (via the map Ainf → Ainf/ξ̃).
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2.2.3. The complexes AΩX and Ω̃X. Let X be a flat formal scheme4 over
OC , with smooth generic fibre X, seen as an adic space over C. There
is a natural morphism of sites

ν : Xproét → Xét,

as well as a sheaf5 Ainf := Ainf,X := ¤�W (lim←−ϕ O+
X/p) of Ainf -modules on

Xproét, where the hat denotes the derived p-adic completion (see [5, Rem.
5.5] for an explanation why the hat might be necessary). Even though
Ainf is a sheaf of complexes, for all practical purposes, it behaves as if it
were defined naively by W (lim←−ϕ O+

X/p): for an affinoid perfectoid U =

Spa(R,R+) we have H0(U,Ainf) = Ainf(R
+) and [m[]Hi(U,Ainf) = 0,

for i > 0 (cf. [5, Lemma 5.6]). The sheaf of complexes Ainf is endowed
with a Frobenius ϕ, which is a quasi-isomorphism, as well as with a map

θ : Ainf → “O+
X := lim←−O+

X/p
n,

which is compatible with the map θ : Ainf → OC and with Frobenius.
Define

AΩX := Lηµ(Rν∗Ainf,X) ∈ D≥0(Xét, Ainf),

and
Ω̃X := Lηζp−1(Rν∗ “O+

X) ∈ D≥0(Xét).

Since the functors Lηµ and Rν∗ are lax symmetric monoidal (see [5,
Prop. 6.7] for the first functor), AΩX is naturally a commutative ring in
D(Xét), and an algebra over the constant sheaf Ainf . Similarly, Ω̃X is a
commutative OX-algebra object in D(Xét) (see also the discussions after
Definition 8.1 and 9.1 in [5]).

2.3. The Hodge–Tate and de Rham specializations.

2.3.1. The smooth case. Suppose first that X is smooth over OC . The
following result is proved in [5] (for the Zariski site, but the proof is
identical in our case).

Theorem 2.2. (Bhatt-Morrow-Scholze, [5, Th. 8.3]) There is a natural
isomorphism of OX-modules on Xét

Hi(Ω̃X) ' ΩiX/OC
{−i}.

We will recall the key relevant points since we will need some infor-
mation about the construction of this isomorphism.

Let R be a formally smooth OC-algebra, such that Spf(R) is con-
nected, together with an étale map A := OC{T±1

1 , . . . , T±1
d } → R. We

4Recall that all our formal schemes are p-adic and locally of finite type.
5Actually, a sheaf of complexes.
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will simply say that R is a small algebra and call the map A → R

a framing. Let R̂ be the (perfectoid) completion of the normalization
R of R in the maximal pro-finite étale extension of R[1/p], and let
∆ := Gal(R[1/p]/R[1/p]). Define

A∞ := OC{T±1/p∞

1 , . . . , T
±1/p∞

d }, R∞ = R“⊗AA∞.
We have Γ := Gal(R∞/R) ' Zp(1)d = ⊕di=1Zpγi, where γi sends T

1/pn

i

to ζpnT
1/pn

i and fixes T 1/pn

j for j 6= i. By the almost purity theorem
of Faltings, the natural map (group cohomology is always continuous
below) RΓ(Γ, R∞) → RΓ(∆, R̂) is an almost quasi-isomorphism. We
have the following more precise results:

Theorem 2.3. (Bhatt-Morrow-Scholze, [5, Cor. 8.13, proof of prop.
8.14]) Let R be a small algebra together with a framing, as above, and
let X = Sp(R[1/p]) and X = Spf(R).

a) The natural maps

Lηζp−1RΓ(Γ, R∞)→ Lηζp−1RΓ(Xproét, “O+
X)→ RΓ(X, Ω̃X)

are quasi-isomorphisms.
b) Writing Ω̃R for any of these objects, the map Ω̃R ⊗R OX → Ω̃X is

a quasi-isomorphism in D(Xét).
c) If R → S is a formally étale map of small algebras, the natural

map Ω̃R ⊗LR S → Ω̃S is a quasi-isomorphism.

Note that

Hi(Ω̃R) ' Hi(Lηζp−1RΓ(Γ, R∞)) ' Hi(Γ, R∞)

Hi(Γ, R∞)[ζp − 1]
' Hi(Γ, R),

the last isomorphism6 being a standard decompletion result ([5, Prop.
8.9]).

The key result (not obvious since one needs to define the isomorphisms
canonically, independent of coordinates!) is then:

Theorem 2.4. (Bhatt-Morrow-Scholze, [5, Chapter 8]) Let R be a small
algebra.

a) There is a natural R-linear isomorphism H1(Ω̃R) ' Ω1
R/OC

{−1}.
b) The cup-products maps induce R-linear isomorphisms ∧iH1(Ω̃R) '

Hi(Ω̃R) and hence isomorphisms Hi(Ω̃R) ' ΩiR/OC
{−i}.

The isomorphism in a) is constructed in [5, Prop. 8.15] using com-
pleted cotangent complexes. We will make it explicit, as follows: consider

6Induced by the natural map Hi(Γ, R)→ Hi(Γ, R∞).
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a framing A→ R (recall that A = OC{T±1
1 , . . . , T±1

d }). By compatibil-
ity with base change from A to R of all objects involved, it suffices to
construct the isomorphism for R = A. Moreover we may reduce to de-
scribing the isomorphism for A = OC{T±1}, i.e., for d = 1. Then the
twisted map

α : Ω1
R/OC

' H1(Ω̃R){1}

' H1(Γ, R∞)

H1(Γ, R∞)[ζp − 1]
{1} x 7→(ζp−1)x−−−−−−−→ (ζp − 1)H1(Γ, R∞){1}

is an isomorphism, described explicitly by

α

Å
dT

T

ã
= (γ 7→ 1⊗ dlog(ζγ)) = (γ 7→ (ζp − 1)⊗ 1

ζp − 1
dlog(ζγ)),

where ζγ = (ζγ,n)n, for γ ∈ Γ, is defined by the formula ζγ,n :=

γ(T 1/pn)/T 1/pn .

2.3.2. The semistable case. Suppose now that X is semistable. This
means that, locally on X for the étale topology, X = Spf(R), where R
admits an étale morphism of OC-algebras

A := OC{T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d }/(T0 · · ·Tr − pq)→ R

for some d ≥ 0, r ∈ {0, 1, . . . , d} and some rational number q > 0 (we fix
once and for all an embedding pQ ⊂ C). Equip OC with the log-structure
OC \ {0} → OC and X with the canonical log-structure, i.e. given by
the sheafification of the subpresheaf OX,ét ∩ (OX,ét[1/p])

∗ of OX,ét. Let
ΩX/OC

be the finite locally free OX-module of logarithmic differentials
on X over OC . We have the following result:

Theorem 2.5. (Česnavičius-Koshikawa, [7, Th. 4.2, Cor. 4.6, Prop.
4.8, Th. 4.11])

a) There is a unique OX,ét-module isomorphism H1(Ω̃X) ' Ω1
X/OC

{−1}
whose restriction to the smooth locus Xsm is the one given by Theorem
2.2.

b) The cup-product map ∧i(H1(Ω̃X)) → Hi(Ω̃X) is an isomorphism
and so there is a natural OX,ét-module isomorphism

Hi(Ω̃X) ' ΩiX/OC
{−i}.

Remark 2.6. 1) The construction of the map in part a) goes as follows.
The same arguments as in [5] (using completed cotangent complexes)
give a map Ω1,cl

X/OC
{−1} → R1ν∗(“O+

X), where we denoted by the super-
script (−)cl the classical, non logarithmic, differential forms. The results
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in [5] ensure that the resulting map

(2.7) Ω1,cl
X/OC

{−1} → R1ν∗(“O+
X)→

R1ν∗(“O+
X)

R1ν∗(“O+
X)[ζp − 1]

' H1(Ω̃X)

restricts to an isomorphism Ω1
Xsm/OC

{−1} ' (ζp−1)H1(Ω̃X)|Xsm . More-
over, one shows that H1(Ω̃X) is a vector bundle. Hence one can divide
the map (2.7) by ζp − 1 to obtain a map

Ω1
X/OC

{−1} → H1(Ω̃X)

which is an isomorphism over Xsm. One shows that this extends to the
isomorphism in a).

2) The cup-product maps in b) are constructed as follows. Setting
T = Rν∗(“O+

X) and using the identifications

H1(Ω̃X) ' H1(T )

H1(T )[ζp − 1]
, Hi(Ω̃X) ' Hi(T )

Hi(T )[ζp − 1]
,

they are induced by the product maps H1(T )⊗i → Hi(T ), which, in
turn, are induced by the product maps

Hj(T )⊗OX,ét
Hk(T )→ Hj+k(T ⊗L

OX,ét
T )→ Hj+k(T ).

We continue assuming that X is semistable. Recall that the map
θ̃ = θ ◦ ϕ−1 : Ainf,X → “O+

X is surjective with kernel generated by the
non zero-devisor ξ̃ = ϕ(ξ). It thus gives a quasi-isomorphism

Rν∗Ainf,X ⊗L
Ainf ,θ̃

OC
∼→ Rν∗ “O+

X

Since θ̃ sends µ to ζp − 1, it induces a morphism

AΩX/ξ̃ := AΩX ⊗L
Ainf ,θ̃

OC → Ω̃X.

Theorem 2.8. (Česnavičius-Koshikawa, [7, Th. 4.2, Th. 4.17, Cor. 4.6
and its proof])

(1) The above morphism AΩX/ξ̃ → Ω̃X is a quasi-isomorphism.
(2) There is a natural quasi-isomorphism AΩX/ξ

∼→ Ω•X/OC
, where

AΩX/ξ := AΩX ⊗L
Ainf ,θ

OC .
(3) The complex AΩX is derived ξ̃-complete. Hence so is RΓét(X, AΩX)

(and its cohomology groups).

For i ≥ 0, (using the above theorems) we define:

• the Hodge–Tate specialization map
(1) (on sheaves) as the composition

ι̃HT : AΩX → AΩX/ξ̃ → Ω̃X;
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(2) (on cohomology)

ιHT : Hi
ét(X, AΩX)→ H0

ét(X,Ω
i
X/OC

{−i})

as the composition7

ιHT : Hi
ét(X, AΩX)

ι̃HT // Hi
ét(X, Ω̃X)

��
H0

ét(X, H
i(Ω̃X))

∼ // H0
ét(X,Ω

i
X/OC

{−i})

where the second map is the edge morphism in the spectral
sequence

Ei,j2 = Hi
ét(X, H

j(Ω̃X))⇒ Hi+j
ét (X, Ω̃X);

• the de Rham specialization map as the composition

ι̃dR : AΩX → AΩX/ξ
∼→ Ω•X/OC

,

which on cohomology yields a map

ιdR : Hi
ét(X, AΩX)

ι̃dR−−→Hi
dR(X).

2.4. p-adic nearby cycles and Ainf-cohomology. We review here a
result from [6], which describes integral p-adic étale cohomology in terms
of the complex AΩX. Let X be a smooth adic space over C and let X

be a flat formal model of X (not necessarily semistable). Fix an integer
i ≥ 0. Recall that there is an endomorphism8

ξiϕ−1 : τ≤iAΩX → τ≤iAΩX

defined as the composition9

τ≤iAΩX ' Lηµτ≤iRν∗Ainf
ϕ−1

// Lηϕ−1(µ)τ≤iRν∗Ainf

ξi��
LηξLηϕ−1(µ)τ≤iRν∗Ainf = τ≤iAΩX

7We abuse notation and write ι̃HT instead of Hi
ét(X, ι̃HT).

8As an object of D(Xét) but not as an object of D(Xét, Ainf), i.e. the endomor-
phism is not Ainf -linear.

9The first isomorphism follows from the fact that Lηµ commutes with truncations,
see [5, Lemma 6.5], while the definition of the map ξi implicitly uses [5, Lemma 6.9]
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The following commutative diagram defines an operator 1 − ϕ−1 on
τ≤iAΩX{i}:

τ≤iAΩX
1−ξiϕ−1

//

µ−io
��

τ≤iAΩX

µ−io
��

τ≤iAΩX{i}
1−ϕ−1

// τ≤iAΩX{i}

The following result is proved in [6] in the good reduction case. As
we show below the proof goes through in a more general setting. We
define the sheaf Ẑp on Xproét by Ẑp = lim←−n Z/p

nZ and we recall that
Ri lim←− Z/pnZ = 0 for i > 0 (see [22, Prop. 8.2]; this is not tautological
since Xproét is not a replete topos).

Theorem 2.9. (Bhatt-Morrow-Scholze, [6, Chapter 10]) Let X be a
smooth adic space over C with a flat formal model X. Let i ≥ 0. There
is a natural quasi-isomorphism

γ : τ≤iRν∗Ẑp(i)
∼→ τ≤i[τ≤iAΩX{i}

1−ϕ−1

−−−−→ τ≤iAΩX{i}],

where [·] denotes the homotopy fiber. In particular, there is a natural
exact sequence

0→
Hi−1

ét (X, AΩX{i})
(1− ϕ−1)

→ Hi
proét(X, Ẑp(i))→ Hi

ét(X, AΩX{i})ϕ
−1=1 → 0.

Everything is Galois equivariant if X is defined over OK .

Proof. We follow [6] faithfully, but work directly on the p-adic level.
Using the commutative diagram

τ≤iAΩX
1−ξiϕ−1

//

µ−io
��

τ≤iAΩX

µ−io
��

τ≤iAΩX{i}
1−ϕ−1

// τ≤iAΩX{i}

,

it suffices to construct a quasi-isomorphism

µi : τ≤iRν∗Ẑp
∼→ τ≤i[τ≤iAΩX

1−ξiϕ−1

−−−−−−→ τ≤iAΩX].

Let ψi = ξiϕ−1, seen as an endomorphism of τ≤iAΩX (as explained
above) or of T := Rν∗Ainf (defined in the obvious way). These two
endomorphisms are compatible with the canonical map can : AΩX → T .

We start with the following simple fact:

Lemma 2.10. a) For i ≥ j, the map 1 − ψi : Ainf/µ
j → Ainf/µ

j is a
quasi-isomorphism.
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b) There is a quasi-isomorphism of complexes of sheaves on Xproét

Ẑp
µi

−→
∼

[Ainf
1−ψi−−−→ Ainf ].

Proof. a) This follows from the proof of [19, Lemma 3.5 (iii)].
b) Consider the following commutative diagram:

[Ainf
1−ϕ−1

−−−−→ Ainf ]

(µi,µi)o
��

Ẑp

can

77

µi

// [Ainf
1−ξiϕ−1

−−−−−−→ Ainf ]

can
��

[Ainf/µ
j 1−ξiϕ−1

−−−−−−→ Ainf/µ
j ]

The vertical map is a quasi-isomorphism by (a). It suffices thus to show
that we have a quasi-isomorphism

Ẑp
∼−→ [Ainf

1−ϕ−1

−−−−→ Ainf ].

But this is just the derived p-adically complete version of the Artin-
Schreier exact sequence [19, Lemma 3.5 (ii)]. This finishes the proof of
the lemma. �

Write Uψi=1 for the homotopy fiber of 1 − ψi : U → U for U ∈
{AΩX, T}. The above lemma gives rise to a distinguished triangle

Rν∗Ẑp
µi

−→ T
1−ψi−−−→ T,

inducing a quasi-isomorphism

µi : τ≤iRν∗Ẑp
∼→ τ≤iT

ψi=1.

To finish the proof of the theorem, it remains to show (and this is the
hard part) that the map (induced by the natural maps can : AΩX → T

and τ≤iAΩX → AΩX)

τ≤i(τ≤iAΩX)ψi=1 → τ≤iT
ψi=1

is a quasi-isomorphism.
By homological algebra, this happens if 1−ψi acts bijectively on the

kernel and cokernel of canj : Hj(AΩX) → Hj(T ) for j < i, bijectively
on the kernel for j = i, and injectively on the cokernel for j = i. We first
treat the case j = 0, showing that the map can0 is bijective. It suffices
to check that H0(AΩX) = H0(T ). This follows from the isomorphism
H0(AΩX) ' H0(T )/H0(T )[µ] and the vanishing of H0(T )[µ], which is a
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consequence of the fact that Ainf is µ-torsion-free, which in turn follows
from the description of Ainf(U) for affinoid perfectoid objects U ofXproét,
see [5, Lemma 5.6].

Assume now that j > 0 and set Mi = Hi(T ). Recall [5, Lemma 6.4]
that the map µj : Mj/Mj [µ]→ Hj(AΩX) is an isomorphism. It follows
that, for 0 < j ≤ i, the map canj fits into an exact sequence

0→Mj [µ]→Mj [µ
j ]→ Hj(AΩX)

canj−−→Mj →Mj/µ
j → 0.

This sequence is compatible with the operators 1−ψi−j , 1−ψi−j , 1−ψi,
1 − ψi, 1 − ψi, respectively. Thus it suffices to show that 1 − ψi−j is
bijective on Mj [µ

j ]/Mj [µ], that 1 − ψi is bijective on Mj/µ
j for j < i,

and is injective for j = i. This follows from the following lemma (modulo
a change of the roles of i and j). �

Lemma 2.11. ([6, Lemma 10.5]) Let j ≥ 1, i ≥ 0.
a) 1− ψl+j is bijective on Mi/µ

j for l > 0 and is injective for l = 0.
b) 1− ψl is bijective on Mi[µ

j ] for l > 0, surjective for l = 0.
c) 1− ψl is bijective on Mi[µ

j ]/Mi[µ], for l ≥ 0.

Proof. We first prove that 1 − ψl is injective on Mi[µ
j ] for l > 0. If

ψl(x) = x and µjx = 0, then ψl+1(µx) = µx and µx ∈ Mi[µ
j−1], thus,

arguing by induction on j, we may assume that j = 1. Suppose that
µx = 0 and ψl(x) = x, i.e., x−ξlϕ−1(x) = 0. Since ξ ≡ p (mod ϕ−1(µ))

in Ainf and ϕ−1(µ) kills ϕ−1(x), we deduce that (1− pξl−1ϕ−1)(x) = 0.
This forces x = 0, since 1− pξl−1ϕ−1 is an automorphism of the derived
p-complete module Mi (Ainf is derived p-adically complete, hence so are
T = Rν∗Ainf and Mi = Hi(T )). This proves the first step.

Next, the commutative diagram of distinguished triangles

T
µj

//

1−ψl��

T //

1−ψl+j
��

T/µj

1−ψl+j��
T

µj

// T // T/µj

gives a commutative diagram

0 // Mi/µ
j //

1−ψl+j��

Hi(T/µj) //

1−ψl+j��

Mi+1[µj ] //

1−ψl��

0

0 // Mi/µ
j // Hi(T/µj) // Mi+1[µj ] // 0

Since 1 − ψl+j is bijective on Hi(T/µj) (Lemma 2.10 implies that the
map 1 − ψl+j : T/µj → T/µj is a quasi-isomorphism), we deduce that
1− ψl+j is injective on Mi/µ

j , the map 1− ψl is surjective on Mi+1[µj ]

and the cokernel of 1 − ψl+j on Mi/µ
j is identified with the kernel of
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1−ψl onMi+1[µj ]. This last kernel is 0 for l > 0 (by the first step), thus
1 − ψl is bijective on Mi+1[µj ] (this also holds trivially on M0[µj ] = 0)
and 1− ψl+j is bijective on Mi/µ

j for l > 0.
Finally, we need to show that 1 − ψl is bijective on Mi[µ

j ]/Mi[µ].
We may assume that j > 1. Surjectivity follows from that of 1 − ψl on
Mi[µ

j ]. For injectivity, note that if µψl(x) = µx, then ψl+1(µx) = µx

and, since 1 − ψl+1 is injective on Mi[µ
j−1], we obtain x ∈ Mi[µ], as

needed.
�

3. Ainf-symbol maps

Let X be a smooth adic space over C and let X be a flat p-adic formal
model of X over OC . Let ν : Xproét → Xét be the map discussed in the
previous section.

3.1. The construction of symbol maps. We will define compatible
continuous pro-étale and Ainf -symbol maps10

rproét : O(X)∗,⊗i → Hi
proét(X, Ẑp(i)),(3.1)

rinf : O(X)∗,⊗i → Hi
ét(X, AΩX{i}), i ≥ 1.

For i = 1, we will construct below compatible maps of sheaves

cproét
1 : τ≤1(Rν∗Gm[−1])→ τ≤1(Rν∗Ẑp(1)),(3.2)

cinf
1 : τ≤1(Rν∗Gm[−1])→ τ≤1AΩX{1}.

Applying H1
ét(X,−) and observing that

H1
ét(X, τ≤1(Rν∗Gm[−1]))

∼ // H1
ét(X,Rν∗Gm[−1])

H0
ét(X,Rν∗Gm) ' O(X)∗,

we get that the maps cproét
1 , cinf

1 induce global symbol maps

rproét : O(X)∗ → H1
proét(X, Ẑp(1)), rinf : O(X)∗ → H1

ét(X, AΩX{1}).

For i ≥ 1, we define the symbol maps (3.1) using cup product:

x1 ⊗ · · · ⊗ xi 7→ r∗(x1) ∪ · · · ∪ r∗(xi).

10We refer the reader to [10, Sec. 2.2] for a discussion of topology on cohomologies
of rigid analytic varieties and formal schemes. Integrally, we work in the category of
pro-discrete modules, rationally – in the category of locally convex topological vector
spaces over Qp. But, in this paper, we work with the naive topology on cohomology
groups, i.e., the quotient topology, as opposed to the refined cohomology groups
(denoted H̃ in [10]) taken in the derived category of pro-discrete modules.
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The construction of the first map in (3.2) uses the Kummer exact
sequence on Xproét

0→ Ẑp(1)→ lim←−
x 7→xp

Gm → Gm → 0,

obtained by passing to the limit in the usual Kummer exact sequences

0→ µpn → Gm
pn→ Gm → 0

and using the vanishing of R1 lim←− Z/pnZ (see [22, Prop. 8.2]). The
above exact sequence induces, by projection to Xét, the Chern class map

cproét
1 : Rν∗Gm[−1]→ Rν∗(Ẑp(1)).

The construction of the second map in (3.2) uses the above Kum-
mer exact sequence and the twisted Artin-Schreier quasi-isomorphism on
Xproét (cf. lemma 2.10)

Ẑp(1)
γ−→
∼

[Ainf{1}
1−ϕ−1

−−−−→ Ainf{1}],

where the map γ is defined by x(1) 7→ µx{1}, x ∈ Ẑp. By pushing down
to Xét we obtain a map

β : τ≤1Rν∗Ẑp(1)→ τ≤1Rν∗Ainf{1}.

On the other hand, Theorem 2.9 gives us a natural map

γ : τ≤1Rν∗Ẑp(1)→ τ≤1AΩX{1}.

The above two maps are compatible via the map

τ≤1AΩX{1} → τ≤1Rν∗Ainf{1}

and the composition

τ≤1Rν∗Ẑp(1)
γ−−→τ≤1AΩX{1}

1−ϕ−1

−−→τ≤1AΩX{1}

is the 0 map.
The symbol map is simply the composition

cinf
1 : τ≤1(Rν∗Gm[−1])

cproét
1−−−→ τ≤1Rν∗Ẑp(1)

γ−→ τ≤1AΩX{1}.

3.2. Compatibility with the Hodge–Tate symbol map. Let XOK

be a semistable formal scheme over OK . Let M be the sheaf of monoids
on XOK

defining the log-structure, Mgp its group completion. This
log-structure is canonical, in the terminology of Berkovich [2, 2.3], i.e.,
M(U) = {x ∈ OXOK

(U)|xK ∈ O∗XK
(UK)} when U is an affine open

of XOK
. This is shown in [2, Th. 2.3.1], [1, Th. 5.3] and applies

also to semistable formal schemes with self-intersections. It follows that
Mgp(U) = O∗XK

(UK). Set XK := XOK ,K ,X := XOC
, X := XK,C .
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For i ≥ 1, the Hodge–Tate symbol maps

rHT : O(XK)∗,⊗i → H0
ét(X,Ω

i
X)

are defined by taking cup products of the Chern class maps

cHT
1 : τ≤1(Rν∗Gm[−1])→ ΩX[−1], x 7→ dlog(x) :=

dx

x
.

The purpose of this section is to prove the following fact:

Proposition 3.3. Let i ≥ 1. The symbol maps rinf and rHT are com-
patible under the Hodge–Tate specialization map ιHT, i.e.,

ιHT ◦ (rinf |O(XK)∗,⊗i) = rHT.

Proof. The case i = 1. Consider the composition

O(XK)∗ // O(X)∗ ' H1
ét(X, τ≤1(Rν∗Gm[−1]))

cinf
1��

H1
ét(X, AΩX{1})

ιHT{1} // H0
ét(X,Ω

1
X).

We need to show that

Lemma 3.4. The above composition is equal to the map

cHT
1 = dlog : O(XK)∗ → H0

ét(X,Ω
1
X).

Proof. Let ε : Xét → Xét and νX : Xproét → Xét be the canonical
projections, so that ν = ενX . The natural map ι : Ω1

X → ε∗Ω
1
X is

injective (since X is flat over OC) and induces an isomorphism C ⊗OC

Ω1
X ' ε∗Ω1

X .
We start by constructing an isomorphism

α2 : R1ν∗ “O(1)→ ε∗Ω
1
X

as well as the commutative diagram (3.5) below, where:
• the isomorphism α1 : H1(Ω̃X{1}) ' Ω1

X is defined by Theorem 2.5;
• the map R1ν∗ “O+{1} → R1ν∗ “O(1) is induced by the inclusion “O+ ⊂“O and by the map OC{1} → C(1), which is the composite of the inclusion

OC{1} ⊂ C{1} and of the isomorphism C{1} ' C(1) induced by dlog

(see Section 2.2.2). Informally but intuitively the map OC{1} → C(1)

is x{1} → x
ζp−1 (1) (and this can be made rigorous by defining x{1} as

xω, where ω = dlog(ζ)
ζp−1 , see Section 2.2.2).

(3.5) H1(Ω̃X{1})
∼
α1

//

can

��

Ω1
X

ι

$$
R1ν∗ “O+{1} // R1ν∗ “O(1)

∼
α2

// ε∗Ω1
X
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In order to define the map α2 we start by considering Scholze’s iso-
morphism ([23, Lemma 3.24]),

(3.6) α2 : R1νX,∗ “O(1)
∼→ Ω1

X ,

which is uniquely characterized by the property that its inverse is the
unique OX -linear map α−1

2 : Ω1
X → R1νX,∗ “O(1) making the following

diagram commute

(3.7) O∗X
cproét
1 //

dlog
��

R1νX,∗Ẑp(1)

��
Ω1
X

α−1
2 // R1νX,∗ “O(1)

The isomorphism α2 extends to isomorphisms [23, Prop. 3.23]:

RiνX,∗ “O(i) ' ΩiX , i ≥ 0.

The spectral sequence Ei,j2 : Riε∗(R
jνX,∗ “O) ⇒ Ri+jν∗ “O degenerates

thanks to the vanishing of Riε∗Ω
j
X when i > 0 (since coherent sheaves

have vanishing higher cohomology on affinoids, by Tate’s acyclicity the-
orem). It follows that we have isomorphisms

(3.8) R1ν∗ “O(1)
∼→ ε∗R

1νX,∗ “O(1) ' ε∗Ω1
X ,

and we let (abusively) α2 : R1ν∗ “O(1)→ ε∗Ω
1
X be their composition.

Let us prove the commutativity of the diagram (3.5), i.e., the com-
patibility of the maps α1 and α2. Call ρ the composition
(3.9)
ρ : Ω1

X

α−1
1−−→H1(Ω̃X{1})

can−−→ R1ν∗ “O+{1} → R1ν∗ “O(1)
α2−−→ε∗Ω1

X .

We want to show that ρ = ι. It suffices to check this on the smooth
locus of X, which reduces us to the case when X is smooth. We claim
that the maps ρ, ι are OX-linear. This is clear for ι; for ρ we look at the
individual maps in the composition (3.9) that defines it: the second and
the third map are clearly OX-linear, for the first map we use Theorem 2.5,
and for the last map linearity is clear by the OX -linearity of Scholze’s
isomorphism α2 : R1νX,∗ “O(1)

∼→ Ω1
X . Now, the claim that ρ = ι is

local, so we way assume that X is associated to a small algebra R with a
framing A = OC{T±1

i } → R. By functoriality, we may reduce to the case
when R = A and A = OC{T±1}. Now, the desired compatibility follows
from the very construction of the isomorphism α1. More precisely, since
can ◦ γ2 is the multiplication by ζp − 1, we have

(ζp − 1)γ−1
2 (α−1

1 (dT/T )) = can(α−1
1 (dT/T )).
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As we have already seen (cf. the discussion after Theorem 2.4) this cor-
responds to (γ 7→ (ζp − 1) ⊗ 1

ζp−1 dlog(ζγ)) in (ζp − 1)H1(Γ, A∞){1}.
Now the compatibility of the map α2 with the Kummer map (see the
diagram (3.7)) shows that ρ(dT/T ) = dT/T , as wanted.

Next, we claim that the composite

O∗X
// R1νX,∗Ẑp(1) // R1νX,∗Ainf{1}

θ̃��
R1νX,∗ “O+{1} // R1νX,∗ “O(1) // Ω1

X

is the dlog map. Using the characterization of Scholze’s isomorphism
(3.6), this comes down to checking that the map

R1νX,∗Ẑp(1)→ R1νX,∗Ainf{1} → R1νX,∗ “O+{1} → R1νX,∗ “O(1)

is the obvious one. But, by construction, this map is induced by the
map

Ẑp(1)→ Ainf{1} → “O+{1} → “O(1)

sending x(1) to µx{1}, then to θ̃(µx{1}) = (ζp − 1)x{1}, then to x(1),
as desired.

The commutative diagram (3.5) extends to a commutative diagram

R1ν∗Ainf

(R1ν∗Ainf )[µ]{1}
θ̃ //

oγ1

��

R1ν∗Ô
+

(R1ν∗Ô+)[ζp−1]
{1}

oγ2

��

ε∗O∗X
cproét
1��

R1ν∗Ẑp(1)
γ //
β

))

H1(AΩX{1})
θ̃ //

can��

H1(Ω̃X{1})
∼
α1

//

can��

Ω1
X

ι

��

R1ν∗Ainf{1}
θ̃ // R1ν∗ “O+{1}

��
R1ν∗ “O(1)

∼
α2

// ε∗Ω1
X

The only nonobvious commutativity is that of the right-bottom trape-
zoid, i.e. of diagram (3.5), which has already been checked. Using the
diagram, the injectivity of ι and the fact that

O∗X
// R1νX,∗Ẑp(1) // R1νX,∗Ainf{1}

θ̃��
R1νX,∗ “O+{1} // R1νX,∗ “O(1) // Ω1

X

is the dlog map, we deduce that the composition

ε∗O
∗
X

cproét
1−−→R1ν∗Ẑp(1)

γ−−→H1(AΩX{1})
θ̃−−→H1(Ω̃X{1}) ' Ω1

X
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is the map dlog. Passing to global sections, it follows that the map

O(X)∗
cproét
1−−→H0

ét(X,R
1ν∗Ẑp(1))

γ // H0
ét(X, H

1(AΩX{1}))
θ̃��

H0
ét(X, H

1(Ω̃X{1})) ' H0
ét(X,Ω

1
X)

is the dlog map.
Finally, coming back to the definitions of cinf

1 and ιHT{1} we see that
the composition

O(XK)∗ // O(X)∗ ' H1
ét(X, τ≤1(Rν∗Gm[−1]))

cinf
1��

H1
ét(X, AΩX{1})

ιHT{1} // H0
ét(X,Ω

1
X)

is

O(XK)∗ → O(X)∗ ' H1
ét(X, τ≤1(Rν∗Gm[−1]))

cproét
1 // H1

ét(X, τ≤1Rν∗Ẑp(1))

o��
H1

ét(X, AΩX{1})
θ̃

,,

H1
ét(X, Rν∗Ẑp(1))

γoo

H0
ét(X,Ω

1
X) ' H0

ét(X, H
1(Ω̃X{1})) H1

ét(X, Ω̃X{1}),
eoo

where e is the (twisted) edge map in the local-global spectral sequence

Ei,j2 = Hi
ét(X, H

j(Ω̃X))⇒ Hi+j
ét (X, Ω̃X);

We conclude using the following commutative diagram, in which the
vertical maps are edge maps in spectral sequences similar to the one
above:

O(X)∗
cproét
1 // H1

ét(X,Rν∗Ẑp(1))

γ
��

e // H0
ét(X,R

1ν∗Ẑp(1))

θ̃��
H1

ét(X, AΩX{1})

θ̃��

e // H0
ét(X, H

1(AΩX{1}))

��
H1

ét(X, Ω̃X{1})
e // H0

ét(X, H
1(Ω̃X{1})) ' H0

ét(X,Ω
1
X)

�

The case i ≥ 1. Take now the symbol maps

rinf : O(X)∗,⊗i → Hi
ét(X, AΩX{i})
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and consider the composition ιHTrinf :

O(X)∗,⊗i → Hi
ét(X, AΩX{i}) // Hi

ét(X, Ω̃X{i})
e��

H0
ét(X, H

i(Ω̃X{i})) ' H0
ét(X,Ω

i
X).

To finish the proof of our proposition, in view of Lemma 3.4, it suffices to
check that this composition is compatible with products. But, the edge
map e is clearly compatible with products (it is induced by the restric-
tions Hi

ét(X, Ω̃X)→ Hi
ét(U, Ω̃U), for étale maps U→ X) and the first map

is compatible with products by definition. The second map is induced
by the map θ̃ : AΩX → Ω̃X which is compatible with products as can be
easily seen from its definition (see the paragraph just before Theorem
2.8) using the fact that the functor Lη is lax (symmetric) monoidal [5,
Prop. 6.7]. Finally, the last map is the isomorphism given by Theorem
2.5 hence is compatible with products by its very definition. �

4. The Ainf-cohomology of Drinfeld symmetric spaces

Let H = P((Kd+1)∗) ' Pd(K) be the space of K-rational hyper-
planes in Kd+1. Let

HdK := PdK \ ∪H∈H H

be the Drinfeld symmetric space of dimension d. It is a rigid analytic
space. Let XOK

be the standard semistable formal model over OK of
HdK (see [15, Section 6.1]). Let X := XOK

“⊗OK
OC , let X := HdK⊗̂KC

be the rigid analytic generic fiber of X, and let XK = HdK . The group
G = GLd+1(K) acts naturally on all these objects.

The main goal of this section is to prove the following (here and
elsewhere in the paper, the completed tensor product is taken in the
category of pro-discrete modules):

Theorem 4.1. Let i ≥ 0. There is a G× GK-equivariant isomorphism
of topological Ainf-modules

(4.2) Ainf“⊗Zp
Spi(Zp)

∗ ' Hi
ét(X, AΩX{i}),

where Spi(Zp)
∗ is the Zp-dual of a generalized Steinberg representation

(see Section 4.1 for a definition). This isomorphism is compatible with
the operator ϕ−1.

4.1. Generalized Steinberg representations and their duals.
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4.1.1. Generalized Steinberg representations. Let B be the upper trian-
gular Borel subgroup of G and ∆ = {1, 2, . . . , d}, identified with the set
of simple roots associated to B. For each subset J of ∆ we let PJ be the
corresponding standard parabolic subgroup of G and set XJ = G/PJ , a
compact topological space.

If A is an abelian group and J ⊂ ∆, let

SpJ(A) =
LC(XJ , A)∑

i∈∆\J LC(XJ∪{i}, A)
,

where LC means locally constant (automatically with compact support).
This is a smooth G-module over A and we have a canonical isomorphism
SpJ(A) ' SpJ(Z)⊗ A. For J = ∅ we obtain the usual Steinberg repre-
sentation with coefficients in A, while for J = ∆ we have SpJ(A) = A.
For r ∈ {0, 1, . . . , d}, we use the simpler notation

Spr := Sp{1,2,...,d−r}

and we set Spr = 0, for r > d.
We will need the following result:

Theorem 4.3. (Grosse-Klönne, [17, Cor. 4.3]) If A is a field of char-
acteristic p then SpJ(A) (for varying J) are the irreducible constituents
of LC(G/B,A), each occurring with multiplicity 1.

4.1.2. Duals of generalized Steinberg representations. If Λ is a topolog-
ical ring, then SpJ(Λ) has a natural topology: the space XJ being
profinite, we can write XJ = lim←−nXn,J for finite sets Xn,J and then
LC(XJ ,Λ) = lim−→n

LC(Xn,J ,Λ), each LC(Xn,J ,Λ) being a finite free Λ-
module endowed with the natural topology; SpJ(Λ) has the induced
quotient topology.

LetM∗ := Homcont(M,Λ) for any topological Λ-moduleM , and equip
M∗ with the weak topology. Then LC(XJ ,Λ)∗ is naturally isomorphic
to lim←−n LC(Xn,J ,Λ)∗, i.e., it is a countable inverse limit of finite free
Λ-modules. In particular, suppose that L is a finite extension of Qp.
Then SpJ(OL)∗ is a compact OL-module, which is torsion-free.

If S is a profinite set and A an abelian group, let

D(S,A) = Hom(LC(S,Z), A) = LC(S,A)∗

be the space of A-valued locally constant distributions on S. We recall
the interpretation of Spi(Zp)

∗ in terms of distributions. Recall that
H denotes the compact space of K-rational hyperplanes in Kd+1. If
H ∈ H , let `H be a unimodular equation for H (thus `H is a linear
form with integer coefficients, at least one of them being a unit). Let



26 PIERRE COLMEZ, GABRIEL DOSPINESCU, AND WIESŁAWA NIZIOŁ

LCc(H i+1,Z) be the space of locally constant functions f : H i+1 → Z

such that, for all H0, ...,Hi+1 ∈H ,

f(H1, ...,Hi+1)− f(H0, H2, ...,Hi+1) + · · ·+ (−1)i+1f(H0, ...,Hi) = 0

and, if `Hj
, 0 ≤ j ≤ i, are linearly dependent, then f(H0, ...,Hi) = 0.

The work of Schneider-Stuhler [10, Sec. 5.4.1] gives a G-equivariant
isomorphism

Spi(Z) ' LCc(H i+1,Z).

It follows that the inclusion LCc(H i+1,Z) ⊂ LC(H i+1,Z) gives rise to
a strict exact sequence

(4.4) 0→ D(H i+1, A)deg → D(H i+1, A)→ Hom(Spi(Z), A)→ 0,

where D(H i+1, A)deg is the space of degenerate distributions (which is
defined via the exact sequence above).

4.2. Integral de Rham cohomology of Drinfeld symmetric spaces.
Recall the following acyclicity result of Grosse-Klönne, which played a
crucial role in [10].

Theorem 4.5. (Grosse-Klönne, [14, Th. 4.5], [16, Prop. 4.5]) For i > 0,
j ≥ 0, we have Hi

ét(XOK
,ΩjXOK

) = 0 and d = 0 on H0
ét(XOK

,ΩjXOK
). In

particular, we have a natural quasi-isomorphism

RΓdR(XOK
) ' RΓét(XOK

,Ω•XOK
) '

⊕
i≥0

Γét(XOK
,ΩiXOK

)[−i].

Using it and some extra work, we have obtained the following descrip-
tion of Hi

dR(XOK
):

Theorem 4.6. (Colmez-Dospinescu-Nizioł, [10, Th. 6.26]) Let i ≥ 0.
There are natural de Rham and Hodge–Tate regulator maps

rdR : D(H i+1,OK)→ Hi
dR(XOK

),

rHT : D(H i+1,OK)→ H0(XOK
,ΩiXOK

)

that induce topological G-equivariant isomorphisms in the commutative
diagram:

Spi(OK)∗

∼
rHT ''

∼
rdR

// Hi
dR(XOK

)

H0(XOK
,ΩiXOK

)

o

OO
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Proof. (Sketch) Our starting point was the computation of Schneider-
Stuhler [21, chap. 3,4]: a G-equivariant topological isomorphism

Spi(K)∗
αS

∼
// Hi

dR(XK).

Iovita-Spiess [18] made this isomorphism explicit: they proved that there
is a commutative diagram

0 // D(H i+1,K)deg
// D(H i+1,K) //

rdR

(( ((

Spi(K)∗ //

αSo ��

0

Hi
dR(XK)

With a help from a detailed analysis of the integral Hyodo-Kato coho-
mology of the special fiber of XOK

and some representation theory11 this
computation can be lifted to OK . �

The following computation follows immediately:

Corollary 4.7. Let i ≥ 0.

(1) The de Rham regulator rdR induces a topological G-equivariant
isomorphism

rdR : Spi(OK)∗“⊗OK
OC

∼→ Hi
dR(XOK

)“⊗OK
OC

∼→ Hi
dR(X).

(2) The Hodge–Tate regulator rHT induces a topological G-equivariant
isomorphism

rHT : Spi(OK)∗“⊗OK
OC

∼→ H0
ét(XOK

,ΩiXOK
)“⊗OK

OC
∼→ H0

ét(X,Ω
i
X).

4.3. Integrating symbols. Let i ≥ 1. In this section, our goal is to
construct natural compatible regulator maps

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i)), rinf : Spi(Zp)
∗ → Hi

ét(X, AΩX{i})

that are compatible with the classical étale and Ainf -regulators. We
will show later that (the linearizations of) both regulators are G× GK-
equivariant isomorphisms. The maps rét, rinf are constructed by inter-
preting elements of Spi(Zp)

∗ as suitable distributions (see the discussion
in Section 4.1.2), and integrating étale and Ainf -symbols of invertible
functions on HdK against them. This idea appears in Iovita-Spiess [18]
and was also heavily used in [10].

11We used here two facts: (a) Spi(OK) is, up to a K∗-homothety, the unique G-
stable lattice in Spi(K); (b) Spi(k), the reduction mod p of Spi(OK), is irreducible.
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4.3.1. Integrating étale symbols. We start with the construction of the
étale regulator map

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i)).

Fix a cohomological degree i and setM := Hi
ét(X,Zp(i)). ForH0, ...,Hi ∈

H , let

ψét(H0, ...,Hi) := rét

Å
`H1

`H0

⊗ ...⊗ `Hi

`H0

ã
∈M,

where rét : O(HdC)∗,⊗i → M is the étale regulator map. It is clear that
this definition is independent of the choice of the unimodular equations
for H0, ...,Hi.

Proposition 4.8. Let i ≥ 1.
(1) Let δx denote the Dirac distribution at x. There is a unique

continuous Zp-linear map

rét : D(H i+1,Zp)→ Hi
ét(X,Zp(i))

such that rét(δ(H0,...,Hi)) = ψét(H0, ...,Hi) for all H0, ...,Hi ∈
H .

(2) The map rét factors through the quotient Spi(Zp)
∗ of D(H i+1,Zp)

and induces a natural map of Zp-modules

rét : Spi(Zp)
∗→Hi

ét(X,Zp(i)).

Proof. Uniqueness in (1) is clear since the Zp-submodule ofD(H i+1,Zp)

spanned by the Dirac distributions is dense.
Existence in (1) requires more work. Let {Un}n≥1 be the standard

admissible affinoid covering ofX (see [10, proof of Th. 5.8]). Let Π(n) be
the profinite étale fundamental group of Un. Denote by RΓ(Π(n),Zp(i))

the complex of nonhomogenous continuous cochains representing the
continuous group cohomology of Π(n). By the K(π, 1)-Theorem of
Scholze [22, Th. 1.2] this complex also represents RΓét(Un,Zp(i)). Since
the action of Π(n) on Zp(1) is trivial the local étale Chern class map
factors as

cét
1,n : O(Un)∗ → Hom(Π(n),Zp(1))→ RΓ(Π(n),Zp(1))[1].

The global étale Chern class is represented by the composition

cét
1,n : O(X)∗ // lim←−n O(Un)∗ // holimn Hom(Π(n),Zp(1))

��
RΓét(X,Zp(1))[1]

∼ // holimn RΓ(Π(n),Zp(1))[1]

The étale regulator rét : O(X)∗,⊗i → RΓét(X,Zp(i))[i] is then repre-
sented by the cup product: rét := cét

1 ∪ · · · ∪ cét
1 .
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The composition

(4.9) Ψi : H i+1 → O(X)∗,⊗i
rét−−→RΓét(X,Zp(i))[i]

represents the map ψét. We claim that it is continuous. Indeed, it suffices
to show that so are the induced maps Ψi,n : H i+1 → RΓ(Π(n),Zp(i))[i],
for n ≥ 1. Or, by continuty of the cup product that so are the maps
Ψ1,n. Or, simplifying further, that so are the maps

(4.10) Ψ1,n : H 2 → O(X)∗
rét−−→Hom(Π(n),Zp(1)).

To show this, write H = lim←−m Hm, where Hm is the set of m-
equivalence classes of K-rational hyperplanes12 and set

Mn := Hom(Π(n),Zp(1)).

It suffices to show that, for each k ≥ 1, there is an m such that the map

Ψ1,n,k : H 2 Ψ1−−→Mn →Mn/p
kMn

factors through the projection H 2 → H 2
m. Taking into account the

construction of Ψ1,n, it suffices to show that, for m large enough, if two
hyperplanes H0, H1 are m-equivalent, then rét(`H1

/`H0
) ∈ pkMn. But

this is clear, since in this case `H1/`H0 has a prnm’th root in O(Un)∗,
for some constant rn > 0 depending only on Un, and since rét is a
homomorphism, we have rét(`H1

/`H0
) ∈ prnmMn.

Since Hom(Π(n),Zp(1)) is a Banach space and the map Ψi,n, defined
below (4.9), is continuous on H i+1, it defines, by integration against
distibutions, a continuous map

rét,n : D(H i+1,Zp)→ RΓét(Un,Zp(i))[i]

such that rét,n(δ(H0,...,Hi)) = ψét,n(H0, . . . ,Hi), for all H0, . . . ,Hi ∈H ,
where ψét,n is the analog of ψét for Un. The construction being com-
patible with the change of n we get the existence of the map in (1) by
setting rét := lim←−n

rét,n and passing to cohomology.

For (2) we need to check the factorization of the regulator rét from
(1) through the quotient by the degenerate distributions. That is, we
need to show that, for any µ ∈ D(H i+1,Zp)deg, we have rét(µ) = 0. For
that, by the construction of rét(µ), it suffices to check that:

(1) for all H0, ...,Hi+1 ∈H , we have
(4.11)
ψét(H1, ...,Hi+1)−ψét(H0, H2, ...,Hi+1)+...+(−1)i+1ψét(H0, ...,Hi) = 0

12Recall that two hyperplanes H1, H2 are called m-equivalent (i.e., [H1] = [H2] ∈
Hm) if they have unimodular equations `1, `2 such that `1 = `2 modulo $m, where
$ is a uniformizer of K.
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(2) if the `Hj , 0 ≤ j ≤ i, are linearly dependent, ψét(H0, ...,Hi) = 0.

To see (1) note that we can rewrite (4.11) as

ψét(H1, ...,Hi+1) = ψét(H0, H2, ...,Hi+1)− ...+ (−1)iψét(H0, ...,Hi).

Write ψn1,...,ni+1 for ψét(Hn1 , . . . ,Hni+1) and `j for `Hj . We compute,
using the fact that rét is alternate (this kills terms with two `0

`1
which

allows us to go from line 1 to line 2, and introduces signs when we move
1 in front to go from line 3 to line 4),

ψ1,...,i+1 = rét

Ä
`2
`1
⊗ · · · ⊗ `i+1

`1

ä
= rét

Ä
`2
`0
`0
`1
⊗ · · · ⊗ `i+1

`0
`0
`1

ä
= rét

Ä
`2
`0
⊗ · · · ⊗ `i+1

`0

ä
+

i+1∑
s=2

rét

Ä
`2
`0
⊗ . . .⊗ `s−1

`0
⊗ `0

`1
⊗ `s+1

`0
⊗ · · · ⊗ `i+1

`0

ä
= ψ0,2,...,i+1 +

i+1∑
s=2

(−1)ψ0,2,...,s−1,1,s+1,...,i+1

=
i+1∑
s=1

(−1)s−1ψ0,1,...,š,...,i+1

as wanted.
(2) follows from the fact that the étale regulator satisfies the Steinberg

relations. More precisely, if xj = `j/`0, 0 ≤ j ≤ i, where `0, . . . , `i are
linear equations of K-rational hyperplanes, it suffices to show that the
symbol {x1, . . . , xi, 1+a1x1 +· · ·+aixi} vanishes in the Milnor K-theory
group KM

i+1(O(X)∗) when aj ∈ K. Note that the symbol {x1, . . . , xi, 1}
vanishes. We will reduce to this case by the following algorithm.

Step 1: up to reordering we may assume that y1 := (1 + a1x1) 6= 0

(otherwise we are done). Then, using the Steinberg relations {z, 1−z} =

0 and the fact that {x, a} = 0, for a ∈ K∗, we compute

{x1, x2, . . . , xi, 1+a1x1+· · ·+aixi} = {x1,
x2

y1
, . . . , xi

y1
, 1+a2x2

y1
+· · ·+aixi

y1
}.

Note that this makes sense since xj

y1
=

`j
`0+a1`1

∈ O(X)∗ and, in fact, is
again a quotient of two linear equations of K-hyperplanes.

Step 2: reorder the terms in the last symbol to make x2

y1
appear first

and repeat.
�

4.3.2. Integrating Ainf-symbols. Let i ≥ 1. We pass now to the Ainf -
regulator map

rinf : Ainf“⊗Zp
Spi(Zp)

∗ → Hi
ét(X, AΩX{i})
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that is compatible with the classical Ainf -regulator as well as with the
étale regulator

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i))

defined above. To start, we define the regulators

rinf : D(H i+1,Zp)→ Hi
ét(X, AΩX{i}),

rinf : Spi(Zp)
∗ → Hi

ét(X, AΩX{i})

by setting rinf := γrét, where γ : Hi
ét(X,Zp(i))→ Hi

ét(X, AΩX{i}) is the
canonical map from theorem 2.9 and the étale regulator

(4.12) rét : D(H i+1,Zp)→ Hi
ét(X,Zp(i))

is the map defined above.

Corollary 4.13. Let i ≥ 1. The above regulators extend uniquely to
compatible continuous Ainf-linear maps

rinf : Ainf“⊗ZpD(H i+1,Zp)→ Hi
ét(X, AΩX{i}),

rinf : Ainf“⊗Zp
Spi(Zp)

∗→Hi
ét(X, AΩX{i})

that are compatible with the étale regulators.

Proof. Uniqueness is clear. To show the existence, let {Un}n∈N be the
standard admissible affinoid covering of X. For n ∈ N, set

rinf,n : D(H i+1,Zp)→ RΓét(Un, AΩUn{i})[i], rinf,n := γrét,n,

where Un is the standard semistable formal model of Un (see [10, Sec.
5.1]) and the map

rét,n : D(H i+1,Zp)→ RΓét(Un,Zp(i))[i]

was constructed above. The map rinf,n factors as

rinf,n : D(H i+1,Zp)→Mn → RΓét(Un, AΩUn
{i})[i],

where Mn := Hom(Π(n),Zp(i)) for the fundamental group Π(n) of Un.
Since rét = holimn rét,n, we have the factorization

rét : D(H i+1,Zp)→ lim←−nMn

holimn rét,n // holimn RΓét(Un,Zp(i))[i]

RΓét(X,Zp(i))[i]

o
OO
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This induces the following composition of maps

rinf := holimn rinf,n

rinf : Ainf“⊗Zp
D(H i+1,Zp) // Ainf“⊗Zp

lim←−nMn
∼ // lim←−nAinf“⊗Zp

Mn

qq
holimn RΓét(Un, AΩX{i})[i] RΓét(X, AΩX{i})[i]

∼oo

The existence of the first map and of the following isomorphism is clear.
The third map exists because both Ainf“⊗ZpMn and RΓét(Un, AΩX{i})
are derived (p, µ)-adically complete. This proves the existence of the
first regulator in the corollary. The existence of the second follows im-
mediately from the fact that the map (4.12) factors through Spi(Zp)

∗

once we know that the sequence

0→ Ainf“⊗Zp
D(H i+1)deg → Ainf“⊗Zp

D(H i+1)→ Ainf“⊗Zp
Sp∗i → 0

(with D(H i+1)deg = D(H i+1,Zp)deg, D(H i+1) = D(H i+1,Zp), and
Sp∗i = Spi(Zp)

∗) is strict exact. This sequence is obtained from the strict
exact sequence (4.4) by tensoring with Ainf . Hence the only question
is the strict surjection on the right, which follows from the fact that
the sequence (4.4) is actually split (since all modules are duals of free
modules). �

4.4. The Ainf-cohomology of Drinfeld symmetric spaces. We are
now ready to prove Theorem 4.1. If i = 0 both sides of (4.2) are naturally
isomorphic to Ainf .

Let now i ≥ 1. We will show that the map rinf induces a ϕ−1-
equivariant topological isomorphism of Ainf -modules

rinf : Ainf“⊗ZpSpi(Zp)
∗ ∼→ Hi

ét(X, AΩX{i}).

Compatibility with the operator ϕ−1 follows from the fact that rinf

is Ainf -linear and it is induced from rét hence maps D(H i+1,Zp) to
Hi

ét(X, AΩX{i})ϕ
−1=1. For the rest of the claim, first, we show that the

induced map

rinf : (Ainf“⊗Zp
Spi(Zp)

∗)/ξ̃ → Hi
ét(X, AΩX{i})/ξ̃

is a topological isomorphism. But this map fits into the following com-
mutative diagram (of Ainf -linear continuous maps, where Ainf acts on OC
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via θ̃)

(Ainf“⊗ZpSpi(Zp)
∗)/ξ̃

rinf //

θ̃o
��

Hi
ét(X, AΩX{i})/ξ̃� _

α

��
ιHK

xx

OC“⊗Zp
Spi(Zp)

∗

rHT

∼
))

Hi
ét(X, AΩX{i}/ξ̃)

o
��

H0
ét(X,Ω

i
X)

The map α is the change-of-coefficients map; it is clearly injective. The
lower right vertical map is an isomorphism because we have the local-
global spectral sequence

Es,t2 = Hs
ét(X, H

t(AΩX{i}/ξ̃))⇒ Hs+t
ét (X, AΩX{i}/ξ̃)

and, by Theorem 2.8 and Theorem 2.5, the isomorphismsHt(AΩX{i}/ξ̃) '
Ht(Ω̃X{i}) ' ΩtX{i− t}. Hence, by Theorem 4.5,

Es,t2 = Hs
ét(X,Ω

t{i− t}) = 0, s ≥ 1.

The above diagram commutes by Proposition 3.3. The slanted arrow is
a topological isomorphism by Corollary 4.7. It follows that the map α is
surjective, hence it is an isomorphism and so is, by the above diagram,
the map rinf . The latter is also a topological isomorphism because so is
the map θ̃ and the map ιHK is a continuous isomorphism.

Next, we will show that rinf being a topological isomorphism implies
that so is the original map rinf . Let T be the homotopy fiber of rinf . We
claim that the complex

(4.14) T ⊗L
Ainf

Ainf/ξ̃ ' 0.

Indeed, since rinf is an isomorphism, it suffices to show that the domain
and the target of rinf are ξ̃-torsion free. This is clear for the domain.
For the target, note that the distinguished triangle

AΩX{i}
ξ̃−−→AΩX{i} → AΩX{i}/ξ̃

yields an exact sequence

0→ Hi
ét(X, AΩX{i})/ξ̃

α−−→Hi
ét(X, AΩX/ξ̃)→ Hi+1

ét (X, AΩX{i})[ξ̃]→ 0.

By the above, α is an isomorphism, hence Hi+1
ét (X, AΩX{i})[ξ̃] = 0.

Since i ≥ 0 was arbitrary, we deduce that, for all j ≥ 1 and all i,
Hj

ét(X, AΩX{i}) has no ξ̃-torsion, and this is clearly true for j = 0 as
well.
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Since T is derived ξ̃-complete (because so are the domain and the
target of rinf , the latter using the derived ξ̃-completeness of AΩX and
the preservation of this property by derived pushforward and passage to
cohomology), by the derived Nakayama Lemma (see Section 2.1.1) we
have T ' 0 as well. This finishes the proof that rinf is an isomorphism.

Since the domain and the target of rinf are ξ̃-torsion-free and the
reduction rinf is a topological isomorphism so is rinf . This finishes the
proof.

5. Integral p-adic étale cohomology of Drinfeld symmetric
spaces

We are now ready to compute the integral p-adic étale cohomology of
Drinfeld symmetric spaces. Let XK := HdK be the Drinfeld symmetric
space of dimension d over K and let XOK

be its standard semistable
formal model over OK . Let X := XK ×K C.

Theorem 5.1. Let i ≥ 0.

(1) There is a G× GK-equivariant topological isomorphism

rét : Spi(Zp)
∗ ∼→ Hi

ét(X,Zp(i)).

It is compatible with the rational isomorphism

rét : Spi(Zp)
∗ ⊗Qp

∼→ Hi
ét(X,Qp(i))

from [10].
(2) There is a G× GK-equivariant topological isomorphism

rét : Spi(Fp)
∗ ∼→ Hi

ét(X,Fp(i)).

Proof. Set X := XOC
. For i = 0 we set the regulators rét and rét to be

the identity on Zp and Fp (after suitable identifications), respectively.
For i > 0, using the isomorphism Hi

ét(X,Zp(i))
∼→ Hi

proét(X, Ẑp(i))

[10, proof of Cor. 3.46], we pass to pro-étale cohomology. Now, by
theorem 2.9, we have a natural short exact sequence
(5.2)

0→
Hi−1

ét (X, AΩX{i})
(1− ϕ−1)

→ Hi
proét(X, Ẑp(i))→ Hi

ét(X, AΩX{i})ϕ
−1=1 → 0.

By Theorem 4.1, we have a topological isomorphism

rinf : Ainf“⊗ZpSpi(Zp)
∗ ∼→ Hi

ét(X, AΩX{i})
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and this isomorphism is compatible with the action of ϕ−1. We get
topological isomorphisms

Hi
ét(X, AΩX{i})ϕ

−1=1 ' (Ainf“⊗Zp
Spi(Zp)

∗)ϕ
−1=1

' Aϕ
−1=1

inf
“⊗ZpSpi(Zp)

∗ ' Spi(Zp)
∗,

Hi−1
ét (X, AΩX{i})/(1− ϕ−1) ' (Ainf{1}“⊗Zp

Spi−1(Zp)
∗)/(1− ϕ−1)

' (Ainf{1}/(1− ϕ−1))“⊗Zp
Spi(Zp)

∗ ' 0.

Hence, by the exact sequence (5.2), we get a natural continuous isomor-
phism rproét : Spi(Zp)

∗ ∼→ Hi
proét(X, Ẑp(i)). Since its composition with

the natural map Hi
proét(X, Ẑp(i))

∼→ Hi
ét(X, AΩX{i})ϕ

−1=1 is a topolog-
ical isomorphism so is the map rproét itself, as wanted in claim (1).

The last sentence of claim (1) of the theorem is clear (since the integral
and the rational étale regulators are compatible).

For claim (2), we define the regulator rét in an analogous way to its
integral version rét (with which it is compatible by construction). Since
Spi(Fp)

∗ ' Spi(Zp)
∗ ⊗Fp and Hi

ét(X,Fp(i)) ' Hi
ét(X,Zp(i))⊗Fp (the

latter isomorphism by claim (1), which shows that Hi
ét(X,Zp(i)) is p-

torsion free), we have rét ' rét ⊗ IdFp
. Hence, by claim (1), rét is an

isomorphism, as wanted. �
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