INTEGRAL p-ADIC ETALE COHOMOLOGY OF
DRINFELD SYMMETRIC SPACES
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ABsTrRACT. We compute the integral p-adic étale cohomology of
Drinfeld symmetric spaces of any dimension. This refines the
computation of the rational p-adic étale cohomology from [10].
The main tools are: the computation of the integral de Rham
cohomology from [10] and the integral p-adic comparison theo-
rems of Bhatt-Morrow-Scholze and Cesnavi¢ius-Koshikawa which
replace the quasi-integral comparison theorem of Tsuji used in
[10]. Along the way we compute Aj,¢-cohomology of Drinfeld
symmetric spaces.
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1. INTRODUCTION

Let p be a prime number, K a finite extension of Q,,, and C the p-adic
completion of an algebraic closure K of K. Drinfeld’s symmetric space

This research was partially supported by the project ANR-14-CE25 and the NSF
grant No. DMS-1440140.
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of dimension d over K is the rigid analytic variety
H?{ = P?{ \ UHE%H7

where 7 is the space of K-rational hyperplanes in K%', It is equipped
with an action of G = GLg41(K). One of the main results of [10] is
the description of the G x ¥x-modules H (H%,Q,(i)), where HE =
HY ®x C and ¥k = Gal(K/K). The analogous result for (-adic étale
cohomology, ¢ # p, is a classical result of Schneider and Stuhler [21].
It relies on the fact that ¢-adic étale cohomology satisfies a homotopy
property with respect to the open ball (a fact that is false for p-adic étale
cohomology).

The goal of this paper is to refine our result, by describing the integral
p-adic étale cohomology groups Hf (H,Z,(i)). Recall that, for i > 0,
there is a natural generalized Steinberg representation Sp,(Z,) of G (see
Section 4.1 for the precise definition). We endow it with the trivial action
of ¥k and we write Sp,(Z,)* for its Z,-dual.

The main result of this paper is the following:

Theorem 1.1. Fori > 0, there are compatible topological isomorphisms
of G X Y -modules

Hét(Hé, Zp(i)) = sz‘(zp)*v Hét(Hé’a Fp(i)) = Spi(Fp)*,

compatible with the isomorphism H} (HZ, Qp(i)) ~ Sp;(Zy)* ®z, Qp
from [10]. In particular, for i > d these cohomology groups are trivial.

Remark 1.2. (i) If d = 1 and ¢ = 1, this result is due to Drinfeld [11]
(with a shaky proof corrected in [13]; see also [9, Th.1.7]).

(ii) In [8], the étale cohomology with compact support of many p-adic
period domains is computed. The methods are very different from the
ones used in the present paper: they avoid p-adic Hodge theory, follow
Orlik’s ¢-adic computations [20], for ¢ # p, and use computations of Ext
groups between mod p representations of groups like G. This includes
the case of H‘é for which the result reads as follows:

Héit,c(HdCa Z/pn) = Sp2d—z(Z/pn)<d - Z)a b > 5a

as G X Yx-modules.
(iil) Hence étale cohomology and étale cohomology with compact sup-
port of HY are in abstract duality
Hét,c(HdCﬂ Z/pn) = H(?tdiZ(H%7 Z/pn)*(_d)
as G X Yx-modules. However, there is no known Poincaré duality for
spaces like Hdc that would explain this abstract duality and would allow
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to recover the results of this paper from the computation of the coho-
mology with compact support. In fact, computations with some basic
analytic spaces like the unit ball show that there is no naive Poincaré
duality for general p-adic rigid analytic spaces.

FEtale cohomology and Ajpne-cohomology. We will describe now the key
ideas and difficulties occurring in the proof of Theorem 1.1. As in [10,
Sec. 5.1, Sec. 6.2], a key input is the pro-ordinarity of the standard
semistable formal model X4, of H%, a result due to Grosse-Klénne [14].
More precisely, he proved that

(1.3) H' (X0, %, ) =0, i>1,j20,

where Q;eﬁK is the logarithmic de Rham complex of X4, over Ok (for
the canonical log-structures of X4, and €k ). One easily infers from this
that X, is ordinary in the usual sense [10, Sec. 6.2]. The strongest (and
easiest) integral p-adic comparison theorems are available for ordinary
varieties, making it natural to try to adapt them to X4, . Nevertheless,
the fact that X4, is not quasi-compact seems to be a serious obstacle in
implementing the usual strategy [3, Ch. 7] to our setup. The syntomic
method, suitably adapted [10], works well only up to some absolute
constants, and reduces the computation of H}, (HZ, Q,(4)) to that of the
(integral) Hyodo-Kato cohomology of the special fiber of X4, , which
was done in [10]. The latter computation can be done integrally and
also shows that the de Rham cohomology of X4, is p-torsion-free.

The results of Bhatt-Morrow-Scholze [5] (adapted to the semistable
reduction setting by Cesnavi¢ius-Koshikawa [7]) show that, for proper
rigid analytic varieties with semistable reduction, if the de Rham coho-
mology of the semistable integral model is p-torsion free (equivalently,
if the integral Hyodo-Kato cohomology of the special fiber is p-torsion
free) so is the p-adic étale cohomology of the generic fiber. Combined
with [10] and with the rigidity of G-invariant lattices in Sp;(Q,) (a re-
sult due to Grosse-Klonne [17]), this would yield our main result. The
problem is that the proofs in [5] and [7] rely on the properness of the
varieties and it is not clear how to adapt them to our context. However,
the key actor in loc. cit. makes perfect sense: the A;jp¢-cohomology. One
then needs a way to read the p-adic étale cohomology in terms of the
Ajne-cohomology, which can be done even for non quasi-compact vari-
eties thanks to a remarkable (especially due to its simplicity!) formula
in [6] (the way p-adic étale cohomology and Aj;,¢-cohomology are related
in [5] is rather different and does not seem to be very useful in our case).
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This reduces the proof of our main theorem to the computation of the
Ajne-cohomology.

More precisely, let Ay, = W(ﬁé) be Fontaine’s ring associated to C.
The choice of a compatible system of primitive p-power roots of unity
(Cpn ) gives rise to an element p = [e] — 1 € Ajyr (where € corresponds
to (Cpn)n under the identification 0% = fm O¢). This, in turn,
induces a modified Tate twist M — M{i} := M ®a,,, Aint{t}, 1 > 0, on
the category of Ajys-modules, where Aj,s{1} := ﬁAinf(l) c W(C")(1),
Ape{i} = Apme{1}%%. Let X = Hdc and X = X@»K@@(ﬁc. Using the
projection from the pro-étale site of X to the étale site of X and a relative
version of Fontaine’s construction of the ring Aj,¢, one constructs in [5],
[7] a complex of sheaves of Aj,s-modules AQx on the étale site of X,
which allows one to interpolate between étale, crystalline, and de Rham
cohomology of X and X.

The technical result we prove is then:

Theorem 1.4. Fori > 0, there is a topological !

phism of G X G -modules
HE (%, AQx{i}) ~ Aint®z, Sp;(Zy)".

-equivariant 1.S0mor-

Theorem 1.1 is now obtained from this and the description of p-adic
nearby cycles in [6] in terms of AQx (a twisted version of the Artin-
Schreier exact sequence): an exact sequence
(1.5)

Hi (%, AQx{i})
(1=

Proof of Theorem 1.4. We end the introduction by briefly explaining
the key steps in the proof of Theorem 1.4. Fix ¢ > 0 and write for
simplicity M = H*(X, AQx{i}). This is an A;,;-module, which is derived
E-complete, for & = o(u)/p.

In the first step, we interpret (following Schneider-Stuhler [21] and
Tovita-Spiess [18]) Sp,;(Z,)* as a suitable quotient of the space of Z,-
valued measures on J#t1 (recall that 7 is the space of K-rational

0— — Hi (X, Zy (i) — Hi (%, AQx{i})? =! = 0.

hyperplanes in K9t1). This allows us to construct an étale regulator
(an "integration of étale symbols") map

Ter 0 Spi(Zp)* — HE (X, Zy(i))
which induces a regulator map
(1.6) Ping © Aint@z,5p;(Zp)" — Hi (X, AQx{i}).

To prove that ri,¢ is an isomorphism we use the derived Nakayama
Lemma: since both sides of (1.6) are derived &-complete it suffices to
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show that ri,¢ is a quasi-isomorphism when reduced modulo §~ (in the
derived sense). That is, that the morphism

Tint @ IdAmf/g :

(Aint®z,9P;(Zp)") @4 (Aint/€) — Hi (X, AQx{i}) @5 (Aint/€)

inf

is a quasi-isomorphism. To compute the naive reduction Tins modulo &
of (1.6) we use the Hodge-Tate specialization of AQx, which identifies
Hi(AQy /€) with the (twisted) sheaf of 4’th logarithmic differential forms
on X. And, globally, those are well controlled by the acyclicity result
(1.3). Combined with a compatibility between the étale and the Hodge—
Tate Chern class maps and the Hodge—Tate specialization this implies
that 7iy¢ is isomorphic to the Hodge—Tate regulator

THT : ﬁc@szpi(Zp)* — Hgt(x, sz)

And this we have shown to be an isomorphism in [10].

Along the way we also compute that the target HY (X, AQx{i}) of
Tinf 1S g—torsion free. Since the domain Ainf@zp Sp;(Zy)* of rint is also
g—torsion free this shows that r,s @& Id A )E Tinf and hence, by the
above, it is a quasi-isomorphism, as wanted.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, for hospi-
tality during Spring 2019 semester when parts of this paper were written.
We would like to thank Bhargav Bhatt for suggesting that derived com-
pletions could simplify our original proof (which they did !). We thank
Kestutis Cesnavicius and Matthew Morrow for helpful discussions related
to the subject of this paper. Last but not least, we thank the referees
for a very careful reading of the paper and many corrections/suggestions
that we have incorporated into the final exposition.

Notation and conventions. Throughout the paper p is a fixed prime.
The field K is a finite extension of Q,, with the ring of integers 0k and
the residue field k; the field C is the p-adic completion of an algebraic
closure K of K.

All formal schemes are p-adic and locally of finite type (over spec-
ified bases). A formal scheme over Ok is called semistable if, locally
for the Zariski topology, it admits étale maps to the formal spectrum
Spf(Ox{X1,..., X}/ (X1 X, —w)), 1 <r < n, where @ is a uni-
formizer of K. We equip it with the log-structure coming from the special
fiber.

If Ais aring and f € A is a non zero-divisor and T € D(A), we will
often write T/ f for T ®% A/f if there is no confusion.
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2. PRELIMINARIES

2.1. Derived completions and the décalage functor.

2.1.1. Derived completions. We will need the following derived version
of completeness

Definition 2.1. ([24, 091S]) Let I be a finitely generated ideal of a ring
A. We say that M € D(A) is derived I-complete if, for all f € I, we
have
holim(- - — M % M 4 a2 M) =o.
Let A be a ring and let I C A be a finitely generated ideal. We list
the following basic properties of derived completeness [24, 091N]:

(1) Let M be an A-module. If M is classically I-complete, i.e.,
the map M — @M/I”M is an isomorphism, then M is also

derived I-complete [24, 091R]; the converse is true if M is I-
adically separated [24, 091T]

(2) (a) The collection of all derived I-complete A-complexes forms
a full triangulated subcategory Deomp(A,I) of D(A) [24,
091U].

(b) The inclusion functor Deomp(4,I) — D(A) has a left ad-
joint, i.e., given an object M of D(A) there exists a map
M s M of M into a derived complete object of D(A) such
that the map HomD(A)(Z\/Z, E) — Homp4)(M, E) is bijec-
tive whenever F is a derived complete object of D(A) [24,
091V]. The object M is called the derived I-completion' of
M.

(3) M € D(A) is derived I-complete if and only if so are its coho-
mology groups H* (M), i € Z [24, 091P].

(4) (Derived Nakayama Lemma) A derived I-complete complex M €
D(A) is 0 if and only if M ®% A/T ~ 0 [24, 0G1U].

(5) If I is generated by z1,...,z, € A, then M € D(A) is derived I-
complete if and only if M is derived (z;)-complete for 1 <i <n
24, 091V].

(6) If f is a morphism of ringed topoi, then the functor Rf, com-
mutes with derived completions [24, 0A0G].

2.1.2. The Berthelot-Deligne-Ogus décalage functor. For any ring A and
any non zero-divisor f € A there is a functor Ly : D(A) — D(A) (which

LThe terminology here is misleading. In general, the derived I-completion is not
given by M +— holim, (M ®h A/I™), as one would naturally guess.
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in general is not exact) with the key property [5, Lemma 6.4] that there
is a functorial isomorphism?

H'(Lng(T)) ~ H'(T)/(H(T)[)),

where M[f] := {z € M| fx = 0}. Concretely, choose a representative 7'
of T € D(A) such that T%[f] = 0 for all 4, and consider the sub-complex
ng(T*) C T*[1/ f] defined by

np(T°) = {z € f'T"|dx € T}

Up to a canonical isomorphism, its image Ln¢(T) in D(A) depends only
onT.

We list the following properties of the above construction (sometimes
extended to ringed topoi; in this case one needs to be careful when
dealing with derived completions and assume that the involved topoi are
replete):

(1) Lny commutes with truncations [5, Cor. 6.5] and with restriction
3 |5, Lemma 6.14]. Moreover,

Ly (Lng(T)) =~ Lnso(T)

for f,g € A non zero-divisors and T' € D(A) [5, Lemma 6.11].
(2) For all T € D(A), we have Lns(T)[1/f] =~ T[1/f] and there is a

canonical quasi-isomorphism

L (T)/ f = Ly (T) @4 A/ f = (H*(T/f), By),

where (H* (T/f), By) is the Bockstein complex equal to H (T ®4
(fPA/f1A)) in degree i, the differential being the boundary
map associated to the triangle

Tk (FFIA/f*24) T &Y (FA/FH24) > T @) (FA/F*1A).

of scalars

This is discussed in [5, Chapter 6] and [4, Lemma 5.9].
(3) (a) f T"— L — M is a distinguished triangle in D(A), then
Lng(T) — Lns(L) — Lns(M) is also a distinguished trian-
gle if the boundary map H'(M/f) — H**Y(T/f) is the 0
map for all ¢ [4, 5.14].

2Depending on f, not only on the ideal fA. If we want to avoid this, the "correct"
isomorphism is
H'(Lng (T)) = (H'(T)/H (T)[f]) @4 (f*),
where (f?) C A[1/f] is the fractional A-ideal generated by f°.
3The latter means that o (Lnacpy(M)) =~ Ly (axM) for M € D(B) and a: A —

B a map of rings such that a(f) € B is a non zero-divisor.
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(b) For a non zero-divisor g € A and a T' € D(A), the natu-
ral map Lns(T)/g — Lns(T/g) is a quasi-isomorphism if
H*(T/f) has no g-torsion [4, 5.16].

(4) If I C Ais a finitely generated ideal in a ring A and if T' € D(A)
is derived I-complete, then so is Lny(T) [4, Lemma 5.19]. Let T
be a replete topos and let .# C Or be an invertible ideal sheaf.
If K € D(Or) is derived .#-complete, then so is Lny(K) [5,
Lemma 6.19].

(5) If T € DI%U(A) and H°(T) is f-torsion-free then there are natu-
ral maps Ln(T) — T and T — Lny(T) whose compositions are
fe. More precisely, if T is a representative concentrated in de-
grees 0, ...,d and with f-torsion-free terms, then the first map is
induced by n¢(7**) C T*. Multiplication by f¢ on each of the two
complexes factors over this inclusion map. When T' € DZ9(A),
we will refer to the map Ln;(T) — T as the canonical map.

2.2. The complexes AQx and ?235

2.2.1. Fontaine rings. Let

oY = im Oc~ lim Oc/p
TP TP

be the tilt of O (so that C” = Frac(€?,) is an algebraically closed field
of characteristic p). Let Aps = W(0Y) and choose once and for all a
compatible sequence (1, ¢y, (p2, ...) of primitive p-power roots of 1, giving
rise to € = (1,(p, Gp2,...) € ﬁg. Letting ¢ be the natural Frobenius
automorphism of Aj,¢, define

A S
53_@*@)_k”ﬂ—1

The natural surjective map ﬁ’bc — O¢/p lifts to a map 6 : A — Oc

po=[e] -1,

with kernel generated by &; the map 6, in turn, lifts to a map 0, : Ajnr —
W(0¢) with kernel generated by p (however, contrary to 6, 6, is not
always surjective, see [5, Lemma 3.23]). The kernel of the twisted map
0= 0o : Ay — Oc is generated by

We have 0(p) = ¢, — 1.
We list the following properties [4, 2.25].

(1) € modulo p is equal to p.
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(2) Since Ajn¢ and its reduction mod p are integral domains and
since &, &, u are not 0 modulo p, (p, &), (p,g), (p, u) are regular
sequences, and so is the sequence (fN s 1)

(3) The ideals (p,£), (p,€), and (£, 1) define the same topology on
Alnf’

The above constructions naturally generalize to the case when O¢ is
replaced by a perfectoid ring.

2.2.2. Modified Tate twists. The compatible sequence of roots of unity
(Cpn)n gives a trivialization Z,(1) ~ Z,, and we will write { = (Gn)n
for the corresponding basis of Z,(1). By Fontaine’s theorem [12], the
Oc-module

0c{1} = T,(.z,)
is free of rank 1 and the natural map dlog : ppe — Q}ﬁc )z, induces an
Oc-linear injection
dlog : Oc(1) = Oc{1},  dlog(¢) = (dlog(¢pn))n>1-
The Oc-module Oc{1} is generated by
1
=
thus the annihilator of coker(dlog) is ({, —1). For any &c-module M, let
MA{1} := M Qgp, Oc{1}, and we will often write m{1} for the element
of M{1} corresponding to m € M (in particular, a{l} = a-w in Oc{1}).
Finally, define

w

dlog(¢),

Apme{1} = %Ainf(n CW(C) (1),

and let a{l} = ia(l) € Aine(l), if a € Ajps. The Frobenius ¢ on
W(C")(1) induces an isomorphism
¢ Aine{1} 5 (1/6) Aie{1}.
Its inverse defines a map
o A {1} — Ag{1}).
There is a natural map
0:=0op t: Ane{l} = Oc{1}

sending a{1}, for a € A, to 0(¢ 1 (a)) w.
If M is an Ajyp-module, let M{i} := M ®a4,, Aine{1}®?, i € Z. The
map 0 : Ape{l} — Oc{1l} induces a map 6 : M{1} — (M/£){1} of

Ajps-modules (via the map Ajpr — Ainf/é).
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2.2.3. The complexes AQx and ﬁgg Let X be a flat formal scheme® over
Oc¢, with smooth generic fibre X, seen as an adic space over C. There
is a natural morphism of sites

v Xproét — xéta

as well as a sheaf® Ay, = Ajur x 1= W(l'&nsa ﬁ;g/p) of A;ne-modules on
Xprost, where the hat denotes the derived p-adic completion (see [5, Rem.
5.5] for an explanation why the hat might be necessary). Even though
Ajnr is a sheaf of complexes, for all practical purposes, it behaves as if it
were defined naively by W(l'&ng@ 0% /p): for an affinoid perfectoid U =
Spa(R, RT) we have HO(U, Aint) = Aing(RY) and [m°|H' (U, Ajng) = 0,
for ¢ > 0 (cf. [5, Lemma 5.6]). The sheaf of complexes A;,r is endowed
with a Frobenius ¢, which is a quasi-isomorphism, as well as with a map
0: At — OF = lim 6% /p",
which is compatible with the map 0 : Aj,s — O¢ and with Frobenius.
Define
AQyx = L, (RvsAine x) € DZ%(Xat, Aint),
and N
ﬁx = anp_l(Rl/*ﬁ;) S Dzo(x,ét).

Since the functors Ln, and Ry, are lax symmetric monoidal (see |5,
Prop. 6.7] for the first functor), AQx is naturally a commutative ring in
D(%4), and an algebra over the constant sheaf Aj,¢. Similarly, ﬁgg is a

commutative Ox-algebra object in D(Xg;) (see also the discussions after
Definition 8.1 and 9.1 in [5]).

2.3. The Hodge—Tate and de Rham specializations.

2.3.1. The smooth case. Suppose first that X is smooth over O¢. The
following result is proved in [5] (for the Zariski site, but the proof is
identical in our case).

Theorem 2.2. (Bhatt-Morrow-Scholze, [5, Th. 8.3]) There is a natural
isomorphism of Ox-modules on Xg

H (@) = 5 {1},
We will recall the key relevant points since we will need some infor-
mation about the construction of this isomorphism.

Let R be a formally smooth Og-algebra, such that Spf(R) is con-
nected, together with an étale map A := ﬁc{Tfﬂ7 . ,Tfl} — R. We

4Recall that all our formal schemes are p-adic and locally of finite type.
5Actually, a sheaf of complexes.
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will simply say that R is a small algebra and call the map A — R

a framing. Let R be the (perfectoid) completion of the normalization
R of R in the maximal pro-finite étale extension of R[1/p], and let
A := Gal(R[1/p]/R[1/p]). Define

Ao = OATEYP™ . TEVP™Y ) Ry = R®a4A.

We have T := Gal(Roo/R) ~ Z,(1)¢ = @%_,Z,;, where v; sends T;/?"
to Cpniz-;-l/ P" and fixes le/ P for j # i. By the almost purity theorem
of Faltings, the natural map (group cohomology is always continuous

below) RI(I', Rs) — RI'(A,R) is an almost quasi-isomorphism. We
have the following more precise results:

Theorem 2.3. (Bhatt-Morrow-Scholze, [5, Cor. 8.13, proof of prop.
8.14]) Let R be a small algebra together with a framing, as above, and
let X = Sp(R[1/p]) and X = Spf(R).

a) The natural maps

L, 1RT(T, Roo) = Lipe, 1 RT(Xprost, O5) — RI(X, Ox)

are quasi-isomorphisms.

b) Writing Qg for any of these objects, the map Qr @r Ox — Qx is
a quasi-isomorphism in D(Xg).

c) If R — S is a formally étale map of small algebras, the natural
map Qr ®% S — Qg is a quasi-isomorphism.

Note that
N HY(T, Rso)
- HY(T, Ro)[Gp — 1]
the last isomorphism® being a standard decompletion result ([5, Prop.
8.9]).

The key result (not obvious since one needs to define the isomorphisms
canonically, independent of coordinates!) is then:

H'(Qg) ~ H'(Lne,—1RT(T, Rey)) ~ H'(T, R),

Theorem 2.4. (Bhatt-Morrow-Scholze, [5, Chapter 8]) Let R be a small
algebra.
a) There is a natural R-linear isomorphism H'(Qp) ~ Q}%/ﬁc{fl}.

b) The cup-products maps induce R-linear isomorphisms N*H*! ((NZR) ~

H'(Qg) and hence isomorphisms H'(Qg) ~ Q}é/ﬁc{—i}.

The isomorphism in a) is constructed in [5, Prop. 8.15] using com-
pleted cotangent complexes. We will make it explicit, as follows: consider

6Induced by the natural map H¢(T', R) — H(T', Roo).
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a framing A — R (recall that A = O {TF",. .. ,Tjd}). By compatibil-
ity with base change from A to R of all objects involved, it suffices to
construct the isomorphism for R = A. Moreover we may reduce to de-
scribing the isomorphism for A = Oc{T*!'}, i.e., for d = 1. Then the
twisted map

a: Q. ~ H' (Qr){1}
HY T, Rs)
HY(T, Reo)[¢p — 1]
is an isomorphism, described explicitly by

ar

a <?) =@y ledoeg(() =0 (G-De

= (Cp—1)x

(Cp - 1)H1(F, ROO){l}

{1}

1
Cpil

where (, = ((yn)n, for v € T, is defined by the formula ¢, :=
AT T

dlog(¢5)),

2.3.2. The semistable case. Suppose now that X is semistable. This
means that, locally on X for the étale topology, X = Spf(R), where R
admits an étale morphism of &c-algebras

A= 0Ty, ..., T,,TE ..., T (Ty - T, —p?) — R

for some d > 0, r € {0,1,...,d} and some rational number ¢ > 0 (we fix
once and for all an embedding p@ C C). Equip € with the log-structure
Oc \ {0} = O¢ and X with the canonical log-structure, i.e. given by
the sheafification of the subpresheaf Ox ¢ N (Ox ¢t[1/p])* of Ox g;. Let
Qx/6. be the finite locally free Ox-module of logarithmic differentials
on X over Oc. We have the following result:

Theorem 2.5. (Cesnavicius-Koshikawa, [7, Th. 4.2, Cor. 4.6, Prop.
4.8, Th. 4.11])

a) There is a unique Ox g -module isomorphism H' (Qx) ~ Q%e/ﬁc{—l}
whose restriction to the smooth locus X5 1is the one given by Theorem
2.2.

b) The cup-product map N'(H'(Qx)) — H'(Qx) is an isomorphism
and so there is a natural Ox ¢&-module isomorphism

H'(Qx) =~ Q% {—i}.

Remark 2.6. 1) The construction of the map in part a) goes as follows.
The same arguments as in [5] (using completed cotangent complexes)
give a map Q;’;tﬁc{fl} — R, (07), where we denoted by the super-

script (—)°! the classical, non logarithmic, differential forms. The results
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in [5] ensure that the resulting map
R'v.(67F) ~
Rlv.(0%)[¢ — 1

27) QY {-1} = Rn(6%) —

restricts to an isomorphism Q.. 5 {1} = (¢ — 1)H' (Qx)|xem. More-

over, one shows that H*(Qz) is a vector bundle. Hence one can divide
the map (2.7) by ¢, — 1 to obtain a map

1 15
which is an isomorphism over X*™. One shows that this extends to the
isomorphism in a).
2) The cup-product maps in b) are constructed as follows. Setting
T = Rv.(0F) and using the identifications

5 HY(T) H'(T)
H' Q) > — ) 2
HYT)[Gp —1] HY(T)[Gp —1]
they are induced by the product maps H'(T)®" — HY(T), which, in
turn, are induced by the product maps

H'(Qx) =~

HI(T) ®p, ., HY(T) - HNT @, T) — HHT).

We continue assuming that X is semistable. Recall that the map
0=00p 1 Apnx — ﬁ’; is surjective with kernel generated by the
non zero-devisor £ = ¢(£). It thus gives a quasi-isomorphism

L . o
Rv,Aing, x ®a,0d Oc — Ry, ﬁ;g

Since 6 sends i to ¢p — 1, it induces a morphism
AQx/g = AQx ®iinf7§ Oc — Qx

Theorem 2.8. (C‘esnaviéius—Koshikawa, [7, Th. 4.2, Th. 4.17, Cor. 4.6
and its proof])

(1) The above morphism AQx/g —Qxisa quasi-isomorphism.

(2) There is a natural quasi-isomorphism AQzx /& = Q% /6., where
AQx/é = AQx ®hinf’0 Oc. )

(3) The complex AQy is derived §-complete. Hence so is RT¢ (X, AQx)
(and its cohomology groups).

For 4 > 0, (using the above theorems) we define:

e the Hodge—Tate specialization map
(1) (on sheaves) as the composition

THT : AQx — Aﬂx/g—) ﬁx;
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(2) (on cohomology)
o - Hg (X, AQx) = Hg (X, Q00 {=1})

as the composition”

LHT Hét(:{, AQx) g Hgt(:{, ﬁx)

|

HY, (X, H' () —> HY (X, Q5 {—1})

where the second map is the edge morphism in the spectral
sequence

By’ = Hiy (%, H (x)) = Hg (%,0x);
e the de Rham specialization map as the composition
lar : AQx — AQx /S Q;E/ﬁc,
which on cohomology yields a map

tar : HE (%, AQx ) B Hig (X).

2.4. p-adic nearby cycles and A;,;-cohomology. We review here a
result from [6], which describes integral p-adic étale cohomology in terms
of the complex AQx. Let X be a smooth adic space over C' and let X
be a flat formal model of X (not necessarily semistable). Fix an integer
i > 0. Recall that there is an endomorphism®

f%ﬁil : ng'AQx — ng'AQ;{

defined as the composition?

-1
ng'AQx ~ LnuTSiRV*Ainf L> L”]gp*l(u)TgiRV*Ainf

Ve

Lnelng -1 T<iRviAins = 7<; AQx

“We abuse notation and write iy instead of Hét (X, TuT)-

8As an object of D(X¢;) but not as an object of D(Xet, Ajnt), i-e. the endomor-
phism is not Aj,¢-linear.

9The first isomorphism follows from the fact that Lz, commutes with truncations,
see [5, Lemma 6.5], while the definition of the map &* implicitly uses [5, Lemma 6.9]
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The following commutative diagram defines an operator 1 — ¢! on

TgiAQx{i}t

1-gip—?

TSiAQx TgiAQ.‘{

ll/;,e_i llp,_i
N 1=t .
TSZ'AQx{Z} —_— TSiAQx{’L}

The following result is proved in [6] in the good reduction case. As
we show below the proof goes through in a more general setting. We
define the sheaf Z, on Xyt by Zp = Llnn Z/p"Z and we recall that
R? m Z/p"Z = 0 for i > 0 (see [22, Prop. 8.2]; this is not tautological
since Xpro6t 1S NOt a replete topos).

Theorem 2.9. (Bhatt-Morrow-Scholze, [6, Chapter 10]) Let X be a
smooth adic space over C with a flat formal model X. Let i > 0. There
is a natural quasi-isomorphism

vl TSZ'RV*ZP(Z') :) Tgi[TSiAQx{i} i) TSZ'AQx{i}],

where [] denotes the homotopy fiber. In particular, there is a natural
exact sequence

H (X, AQx{i}) ;
é H:
(1 _ <)0,1) - proét

Everything is Galois equivariant if X is defined over O .

0— (X, Z,(i)) — Hi (X, AQx{i})® =' > 0.

Proof. We follow [6] faithfully, but work directly on the p-adic level.
Using the commutative diagram

1—51.8971
TgiAﬂx E—— TﬁiAQX 5

?\Lu’i llu”'
1ot
—p

TSiAQx{i} _— TSZAQx{Z}
it suffices to construct a quasi-isomorphism

) ~ i -1
' T< R Zy = T<i[T<; AQx R S T<;AQx].

Let ¥; = %1, seen as an endomorphism of 7<;AQyx (as explained
above) or of T := Ruv,Ajyr (defined in the obvious way). These two
endomorphisms are compatible with the canonical map can : AQx — T.

We start with the following simple fact:

Lemma 2.10. a) For i > j, the map 1 — ; : Ajng/p? — Ajnr/17 is a
quasi-isomorphism.
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b) There is a quasi-isomorphism of complexes of sheaves on Xproet
5 o 1—1;
Zp — [Ainf — Ainf]~

Proof. a) This follows from the proof of [19, Lemma 3.5 (iii)].
b) Consider the following commutative diagram:

[Ainf i> Ainf]

. 1_5i¢*1 .
[Aing /1) == Aine/1’]

The vertical map is a quasi-isomorphism by (a). It suffices thus to show

that we have a quasi-isomorphism

~ _ -1
Zp — [Ainf L} Ainf].
But this is just the derived p-adically complete version of the Artin-

Schreier exact sequence [19, Lemma 3.5 (ii)]. This finishes the proof of
the lemma. g

Write U%=" for the homotopy fiber of 1 —¢; : U — U for U €
{AQx%,T}. The above lemma gives rise to a distinguished triangle

Ru.Z, £ T 225 1,

inducing a quasi-isomorphism
i, 7~ =1
wT<i Ry, — 1< T .

To finish the proof of the theorem, it remains to show (and this is the
hard part) that the map (induced by the natural maps can : AQx — T
and TSiAQ% — AQx)

Tgi(TSiAQx)d}i:l — TSiTwizl

is a quasi-isomorphism.

By homological algebra, this happens if 1 — 1; acts bijectively on the
kernel and cokernel of can; : H/(AQx) — H’(T) for j < i, bijectively
on the kernel for j = 4, and injectively on the cokernel for j = i. We first
treat the case j = 0, showing that the map cang is bijective. It suffices
to check that H°(AQx) = HO(T). This follows from the isomorphism
H(AQx) ~ H(T)/H°(T)[u] and the vanishing of H°(T)[u], which is a
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consequence of the fact that Ay,¢ is pu-torsion-free, which in turn follows
from the description of Ajn¢(U) for affinoid perfectoid objects U of Xproet,
see [5, Lemma 5.6].

Assume now that j > 0 and set M; = H'(T). Recall [5, Lemma 6.4]
that the map p/ : M;/M;[u] — H’(AQx) is an isomorphism. It follows
that, for 0 < j <4, the map can; fits into an exact sequence

0 — M;[u] — M;[p!] — HI (AQx)—2LM; — M;/p? — 0.
This sequence is compatible with the operators 1 —;_;, 1—1;_;, 1 =1,
1 — ), 1 — 14, respectively. Thus it suffices to show that 1 —¢;_; is
bijective on M;[u/]/M;[u], that 1 — 1, is bijective on M;/u for j < i,
and is injective for j = 4. This follows from the following lemma (modulo
a change of the roles of i and j). O

Lemma 2.11. ([6, Lemma 10.5]) Let j > 1, ¢ > 0.
a) 1 —yq; is bijective on M;/p? for 1 >0 and is injective for | = 0.
b) 1 — 4y is bijective on M;[1?] for 1 > 0, surjective for | = 0.
) 1 — 1y is bijective on M;[u?]/M;[u], for 1 > 0.

Proof. We first prove that 1 — 1 is injective on M;[u’] for [ > 0. If
Py(z) = z and pfx = 0, then ¢, (ur) = pz and pr € M;[p?~1], thus,
arguing by induction on j, we may assume that j = 1. Suppose that
pz =0 and ¥y (x) = z, i.e., v — &~ (z) = 0. Since ¢ = p (mod ¢~ 1(u))
in A, and o~ (p) kills ¢! (2), we deduce that (1 —p&=tp=1)(x) = 0.
This forces 2 = 0, since 1 — p&!~1p~! is an automorphism of the derived
p-complete module M; (A, is derived p-adically complete, hence so are
T = Rv,Ajyr and M; = H(T)). This proves the first step.
Next, the commutative diagram of distinguished triangles

i

T T —» T/uj
\Llﬂh ilﬂﬁzﬂ‘ \L1*¢l+j
J .

T——T——T/Ww

gives a commutative diagram
0 —— M;/p/ —— H(T/i) —— M1 [p] —=0
\Ll—dnﬂ‘ i/l—lbzﬂ' i/l*wz
0 My —— HH(T /) —— M) — 0
Since 1 — 44 is bijective on H*(T/p/) (Lemma 2.10 implies that the
map 1 — 4, : T/p? — T/p? is a quasi-isomorphism), we deduce that

1 — )y, is injective on M;/p?, the map 1 — 4 is surjective on M;q[u/]
and the cokernel of 1 — ¢;4; on M;/u/ is identified with the kernel of
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1—1p; on M;y1[p?]. This last kernel is 0 for [ > 0 (by the first step), thus
1 — 4y is bijective on M, 1[p?] (this also holds trivially on My[u/] = 0)
and 1 — 44 ; is bijective on M;/p? for [ > 0.

Finally, we need to show that 1 — 1 is bijective on M;[u?]/M;[u).
We may assume that j > 1. Surjectivity follows from that of 1 — v; on
M;[p/]. For injectivity, note that if pi);(z) = px, then 1 (ur) = px
and, since 1 — vy is injective on M;[u?~1], we obtain x € M;[u], as
needed.

(Il

3. A;ne-SYMBOL MAPS

Let X be a smooth adic space over C' and let X be a flat p-adic formal
model of X over O¢. Let v : Xpro6t — X¢ be the map discussed in the
previous section.

3.1. The construction of symbol maps. We will define compatible
continuous pro-étale and Aj;ye-symbol maps'®

(3.1) Poroct + O(X)" %" = Hroet (X, Zy (i),
ring : O(X)5®" — H (X, AQx{i}), i>1.
For ¢« = 1, we will construct below compatible maps of sheaves
(3.2) A o (R G [—1]) — 7<1 (R Zp(1)),
cilnf : <1 (RviGp [—1)) — 7<1 AQx{1}.
Applying H, ét (%X, —) and observing that
H, (%, 7<1 (RuuGm[—1])) = Hg, (X, ReuGi[—1])

I
HY (X, RiGy) = O(X)",

we get that the maps ¢?™°%", ¢ induce global symbol maps
Poroct : O(X)* = Hh oot (X, Zp(1)),  7ing 1 O(X)* — HA (X, AQx{1}).

For i > 1, we define the symbol maps (3.1) using cup product:

TR @x; = ry(T) U Uri(z).

L0VWe refer the reader to [10, Sec. 2.2] for a discussion of topology on cohomologies
of rigid analytic varieties and formal schemes. Integrally, we work in the category of
pro-discrete modules, rationally — in the category of locally convex topological vector
spaces over Q. But, in this paper, we work with the naive topology on cohomology
groups, i.e., the quotient topology, as opposed to the refined cohomology groups
(denoted H in [10]) taken in the derived category of pro-discrete modules.
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The construction of the first map in (3.2) uses the Kummer exact
sequence on Xy ost

oﬁipu)% @1 G, — G, — 0,

=P

obtained by passing to the limit in the usual Kummer exact sequences
0= pipn = G 5 G,y = 0

and using the vanishing of R! Jim Z/p"Z (see |22, Prop. 8.2]). The
above exact sequence induces, by projection to X¢;, the Chern class map

P Ru,Gon[—1] = Run(Z,(1)).

The construction of the second map in (3.2) uses the above Kum-
mer exact sequence and the twisted Artin-Schreier quasi-isomorphism on
Xproat (cf. lemma 2.10)

Z,(1) 2> [Aine{1} 5 Aune{1}],

where the map ~ is defined by (1) — pz{l},z € Zp. By pushing down
to X¢ we obtain a map

~

B < 1R Zy(1) = T<1RvAje{1}.

On the other hand, Theorem 2.9 gives us a natural map

~

v <R Zy, (1) — <1 AQx{1}.
The above two maps are compatible via the map
T<1AQx{1} = 7<1Rv Ajye{1}
and the composition
iR 2y (1)~ e AQ {1} 7o A (1)

is the 0 map.
The symbol map is simply the composition

proét

A s et (RisGon[-1]) = T<1RinZy (1) & 7<1 AQx{1}.

3.2. Compatibility with the Hodge—Tate symbol map. Let X4,
be a semistable formal scheme over 0. Let M be the sheaf of monoids
on Xgp, defining the log-structure, M®P its group completion. This
log-structure is canonical, in the terminology of Berkovich [2, 2.3], i.e.,
MU) = {z € Ox,, (U)lzrx € 0%, ,(Uk)} when U is an affine open
of X¢,. This is shown in [2, Th. 2.3.1], [1, Th. 5.3] and applies
also to semistable formal schemes with self-intersections. It follows that
MeP(U) = 0%, (Uk). Set X :=Xp, i, X :=Xp., X = Xk c.
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For i > 1, the Hodge-Tate symbol maps
rar i O(Xg)"® — HY (X, Q%)
are defined by taking cup products of the Chern class maps
AT 1o (RukGn[—1]) — Qx[—1], 2+~ dlog(x) := dx—x
The purpose of this section is to prove the following fact:

Proposition 3.3. Let ¢ > 1. The symbol maps rins and rgT are com-
patible under the Hodge—Tate specialization map tyr, i.e.,

wir © (Ping|O(X i )*®") = rar.
Proof. The case i = 1. Consider the composition
O(Xk)" — O(X)" ~ Hy (X, 7<1 RvuGim[-1]))

inf
&

H (%, A0z {1}) —22

We need to show that

Lemma 3.4. The above composition is equal to the map
AT =dlog: 0(Xg)* — HY(X,0%).

Proof. Let € : X¢ — X¢ and vx @ Xproet — Xot be the canonical
projections, so that v = evy. The natural map ¢ : Q% — £,0% is
injective (since X is flat over €¢) and induces an isomorphism C ®g,
QL ~ e, 0%.

We start by constructing an isomorphism

oy Rlu*é’\(l) — E*Qﬁ(

as well as the commutative diagram (3.5) below, where:

e the isomorphism oy : H!'(Qx{1}) ~ Q% is defined by Theorem 2.5;

e the map R'v, 07 {1} — R'1,0(1) is induced by the inclusion 0+ C
0 and by the map 0c{1} — C(1), which is the composite of the inclusion
Oc{1} C C{1} and of the isomorphism C{1} ~ C(1) induced by dlog
(see Section 2.2.2). Informally but intuitively the map Oc{1} — C(1)
is {1} = =%5(1) (and this can be made rigorous by defining z{1} as

Cp—1
Tw, where w = dé%}?, see Section 2.2.2).
(3.5) H'(Ox{1}) — = 0}

M o

R1V*5+{1} — Rll/*é’\(l) TN2> . Q%
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In order to define the map ay we start by considering Scholze’s iso-
morphism ([23, Lemma 3.24]),

(3.6) Qs Rlz/x’*g(l) 5k,

which is uniquely characterized by the property that its inverse is the
unique Ox-linear map a5 ' : Q% — Rlvy.@(1) making the following
diagram commute

proét
~

(3.7) 0% ——Rlvx .Z,(1)

wl ]

QL —2 = Rlyy,6(1)

The isomorphism «s extends to isomorphisms [23, Prop. 3.23]:

Rivy..0(i) ~ Qi, i>0.
The spectral sequence E;j : Rie%(Rj Z/X’*g ) = RitJ u*g degenerates
thanks to the vanishing of RiE*QJX when ¢ > 0 (since coherent sheaves
have vanishing higher cohomology on affinoids, by Tate’s acyclicity the-
orem). It follows that we have isomorphisms

(3.8) Rll/*g(l) = €*R11/X’*g(1) ~ e, 0k,

and we let (abusively) as : R'v.0(1) — £,.Q% be their composition.
Let us prove the commutativity of the diagram (3.5), i.e., the com-
patibility of the maps a; and as. Call p the composition
B9 _ _
pr QLIS HYQR{1)) B R, 01 {1} = R, 0(1)—2252,0.

We want to show that p = . It suffices to check this on the smooth
locus of X, which reduces us to the case when X is smooth. We claim
that the maps p, ¢ are Ox-linear. This is clear for ¢; for p we look at the
individual maps in the composition (3.9) that defines it: the second and
the third map are clearly Ox-linear, for the first map we use Theorem 2.5,
and for the last map linearity is clear by the Ox-linearity of Scholze’s
isomorphism sy : Rlvy,0(1) 5 QL. Now, the claim that p = . is
local, so we way assume that X is associated to a small algebra R with a
framing A = ﬁc{Tiﬂ} — R. By functoriality, we may reduce to the case
when R = A and A = Oc{T*'}. Now, the desired compatibility follows
from the very construction of the isomorphism a;. More precisely, since
can o 7y, is the multiplication by (, — 1, we have

(G — D)7z (g ' (dT/T)) = can(ay * (dT/T)).
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As we have already seen (cf. the discussion after Theorem 2.4) this cor-
responds to (y — (¢, — 1) ® ﬁdbg({’y)) in (¢, — 1)HY(T, Axo){1}.
Now the compatibility of the map s with the Kummer map (see the
diagram (3.7)) shows that p(dT/T) = dT/T, as wanted.

Next, we claim that the composite

0% — Rvx . Z,(1) — Rlux Ape{1}
Vo
Rlvx,. 0 {1} —Rlvx,0(1) = QL
is the dlog map. Using the characterization of Scholze’s isomorphism
(3.6), this comes down to checking that the map
R'vx . Zp(1) = Rlux s Am{1} = Rlux .0 {1} = Ry, 0(1)

is the obvious one. But, by construction, this map is induced by the
map
Zy(1) = Aine{1} = 61 {1} — 6(1)
sending z(1) to px{1}, then to A(uz{1}) = (¢, — 1)z{1}, then to z(1),
as desired.
The commutative diagram (3.5) extends to a commutative diagram

Rlv.A;, %
Wioh .nffu]{l} ®v. o0t
e 0% | =

¢/c§)roét i
Rlv,Z,(1) —> HY(AQx{1}) —2 = HY(Qx{1}) — 0}

~Z e é Jean

Rlv, Apme{1} Rlv, 0+ {1} .
Rlu*g(l) . 0%

The only nonobvious commutativity is that of the right-bottom trape-
zoid, i.e. of diagram (3.5), which has already been checked. Using the
diagram, the injectivity of ¢+ and the fact that

ﬁ;} — RlVX,*Zp(]-) — RlVX,*Ainf{]-}
Va
Rlyx’*g—i_{].} — Rll/X’*g(].) — Q}(

is the dlog map, we deduce that the composition

px 0ét

e 0% T RW.Z, (1) HY (AQ 1)L HY Qe 1)) = QL
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is the map dlog. Passing to global sections, it follows that the map

proét

O(X)* " HY, (X, R'v.Z, (1)) — > HY (X, H'(AQx{1}))
\é

HY, (X, HY(Qx{1})) ~ HY,(X, Q%)

is the dlog map.
Finally, coming back to the definitions of ™ and tgr{1} we see that
the composition

O0(Xk)* — O(X)" = Hyy (X, 7<) (RvuGrm[-1]))

inf
l/(;l

HY (X, AQx{1}) — 1

Hgt (:{7 Ql%)
is

roét
CP

O(Xk)* = O(X)* = HY\ (X, 7<1(RiuGn[~1)) —— H (X, 7<1 Rv. Z,(1))
\Lz

: H}Y (X, Ru.Z,(1))

H (X, AQx{1})

0

HY, (%, Q%) ~ HY, (X, H (Qx{1})) HE (%, Qx{1)),

where e is the (twisted) edge map in the local-global spectral sequence
By’ = Hjy (X, H (Q2)) = HiH (%,Q2);

We conclude using the following commutative diagram, in which the
vertical maps are edge maps in spectral sequences similar to the one
above:

proét

O(X)* —— HL(X,RunZ,(1)) —— HY, (X, R'1,Z,(1))

" %

HY(X, AQx{1}) — > HE(X, H' (AQx{1})
% |

HE (%, Qx{1}) —= H,(X, H'(Qx{1})) ~ HY,(X,0Q%)
O

The case © > 1. Take now the symbol maps

Ping : O(X)5®0 — HL (X, AQx{i})
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and consider the composition tgrrine:

O(X) %1 — Hi (X, AQx{i}) — Hi (X, Qx{i})

Ve

HY (%, H'(Qux{i})) ~ HE (X, ).

To finish the proof of our proposition, in view of Lemma 3.4, it suffices to
check that this composition is compatible with products. But, the edge
map e is clearly compatible with products (it is induced by the restric-
tions HY, (X, Qx) — H (4, Qy), for étale maps 4 — X) and the first map
is compatible with products by definition. The second map is induced
by the map 6: AQx — ﬁ_’{ which is compatible with products as can be
easily seen from its definition (see the paragraph just before Theorem
2.8) using the fact that the functor L, is lax (symmetric) monoidal [5,
Prop. 6.7]. Finally, the last map is the isomorphism given by Theorem
2.5 hence is compatible with products by its very definition. (Il

4. THE A; s-COHOMOLOGY OF DRINFELD SYMMETRIC SPACES

Let 27 = P((K9tY)*) ~ PY(K) be the space of K-rational hyper-
planes in K91, Let

HY :=P% \UngesnrH

be the Drinfeld symmetric space of dimension d. It is a rigid analytic
space. Let X4, be the standard semistable formal model over Ok of
HY (see [15, Section 6.1]). Let X := X, Doy, Oc, let X = HL&xC
be the rigid analytic generic fiber of X, and let Xx = H%. The group
G = GL441(K) acts naturally on all these objects.

The main goal of this section is to prove the following (here and
elsewhere in the paper, the completed tensor product is taken in the
category of pro-discrete modules):

Theorem 4.1. Let i > 0. There is a G X Yk -equivariant isomorphism
of topological Ajns-modules

(4.2) Aint®2,80:(Zp)" = Hi (X, AQx{i}),
where Sp;(Zy)* is the Z,-dual of a generalized Steinberg representation

(see Section 4.1 for a definition). This isomorphism is compatible with

the operator o~ 1.

4.1. Generalized Steinberg representations and their duals.
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4.1.1. Generalized Steinberg representations. Let B be the upper trian-
gular Borel subgroup of G and A = {1,2,...,d}, identified with the set
of simple roots associated to B. For each subset J of A we let P; be the
corresponding standard parabolic subgroup of G and set X; = G/Py, a
compact topological space.

If A is an abelian group and J C A, let

LO(X,, A)
Sieavs LC(Xyupiy, A)

where LC means locally constant (automatically with compact support).

Sp;(A4) =

This is a smooth G-module over A and we have a canonical isomorphism
Sp;(A) ~ Sp;(Z) ® A. For J = & we obtain the usual Steinberg repre-
sentation with coefficients in A, while for J = A we have Sp;(A) = A.
For r € {0,1,...,d}, we use the simpler notation

Sp, = SP{1,2,....d—r}

and we set Sp,. =0, for r > d.
We will need the following result:

Theorem 4.3. (Grosse-Klonne, [17, Cor. 4.3]) If A is a field of char-
acteristic p then Sp;(A) (for varying J) are the irreducible constituents
of LC(G/B, A), each occurring with multiplicity 1.

4.1.2. Duals of generalized Steinberg representations. If A is a topolog-
ical ring, then Sp;(A) has a natural topology: the space X; being
profinite, we can write X; = l'mn X,y for finite sets X,, ; and then
LC(X,,A) = lim LC(X,, 7, ), each LC(X,, s, A) being a finite free A-
module endowed with the natural topology; Sp;(A) has the induced
quotient topology.

Let M* := Homcont (M, A) for any topological A-module M, and equip
M* with the weak topology. Then LC(X;, A)* is naturally isomorphic
to l&ln LC(X,, 5, A)*, ie., it is a countable inverse limit of finite free
A-modules. In particular, suppose that L is a finite extension of Q.
Then Sp;(€r)* is a compact &r-module, which is torsion-free.

If S is a profinite set and A an abelian group, let

D(S, A) = Hom(LC(S, Z), A) = LC(S, A)*

be the space of A-valued locally constant distributions on S. We recall
the interpretation of Sp;(Z,)* in terms of distributions. Recall that
¢ denotes the compact space of K-rational hyperplanes in Kt If
H € 52, let £y be a unimodular equation for H (thus ¢y is a linear
form with integer coefficients, at least one of them being a unit). Let
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LC¢(s#"+1,Z) be the space of locally constant functions f : 1 — Z
such that, for all Hy, ..., H;y1 € 7,

f(Hy,....,Hiq) — f(Ho, Hay oo, Hipq) + -+ (=1 f(Ho, ..., H;) = 0

and, if £g;, 0 < j < i, are linearly dependent, then f(Ho, ..., H;) = 0.
The work of Schneider-Stuhler [10, Sec. 5.4.1] gives a G-equivariant
isomorphism

Sp,(Z) ~ LC (4", Z).
It follows that the inclusion LC¢(#+1 Z) C LC(S#H1, Z) gives rise to
a strict exact sequence

(4.4) 00— DA™, A)geg — D(, A) — Hom(Sp,(Z), A) — 0,

where D (1| A)geq is the space of degenerate distributions (which is
defined via the exact sequence above).

4.2. Integral de Rham cohomology of Drinfeld symmetric spaces.
Recall the following acyclicity result of Grosse-Klénne, which played a
crucial role in [10].

Theorem 4.5. (Grosse-Klonne, [14, Th. 4.5], [16, Prop. 4.5]) Fori > 0,
J >0, we have HY (Xp,, Y%, ) =0 andd =0 on HY(Xo,, Y, ). In
K K
particular, we have a natural quasi-isomorphism
RFdR(xﬁK) = Rrét(xﬁkv ;CgK) = @ Fét(%ﬁka Qi%gK )[71]
i>0
Using it and some extra work, we have obtained the following descrip-

tion of Hig(Xg,):

Theorem 4.6. (Colmez-Dospinescu-Niziol, [10, Th. 6.26]) Let i > 0.
There are natural de Rham and Hodge—Tate requlator maps

TdR - D(%i+1, ﬁK) — HéR(%ﬁK),

THT : D(%H—l, ﬁK) — HO(:{@’K, i%@K)
that induce topological G-equivariant isomorphisms in the commutative

diagram:

~

Sp( Ok~ Hig(%0,.)

~ l T
THT

Ho(xﬁx ) QixﬁK>
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Proof. (Sketch) Our starting point was the computation of Schneider-
Stuhler [21, chap. 3,4]: a G-equivariant topological isomorphism

Sp; (K)* Lj) HéR(XK)~

Tovita-Spiess [18] made this isomorphism explicit: they proved that there
is a commutative diagram

0 —> D(H" K)geg —= D(HK) — Sp,;(K)* —=0
TdR Z\Las

Hip(Xk)

With a help from a detailed analysis of the integral Hyodo-Kato coho-
mology of the special fiber of X4, and some representation theory!! this
computation can be lifted to Ok . O

The following computation follows immediately:

Corollary 4.7. Let ¢ > 0.

(1) The de Rham regulator rqr induces a topological G-equivariant
isomorphism

rar : Sp;(Ok ) Re, Oc S Hig (X6, ) @6, Oc = Hin (X).

(2) The Hodge—Tate regulator rur induces a topological G-equivariant
isomorphism

rur : Spi(OK) @ Oc = HE (X0, Vs, J@0x Oc = HG(X, Q).

4.3. Integrating symbols. Let ¢ > 1. In this section, our goal is to
construct natural compatible regulator maps

Tet  Spi(Zy)* — Hét(Xv Z,(7), 7Tt Sp;(Zp)" — Hét(.'{, AQx{i})

that are compatible with the classical étale and Aj,¢-regulators. We
will show later that (the linearizations of) both regulators are G x ¥x-
equivariant isomorphisms. The maps rg;, rinf are constructed by inter-
preting elements of Sp;(Z,)* as suitable distributions (see the discussion
in Section 4.1.2), and integrating étale and Ajne-symbols of invertible
functions on H¢ against them. This idea appears in Iovita-Spiess [18]
and was also heavily used in [10].

HWe used here two facts: (a) Sp;(Ck) is, up to a K*-homothety, the unique G-
stable lattice in Sp;(K); (b) Sp;(k), the reduction mod p of Sp;(0k), is irreducible.
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4.3.1. Integrating étale symbols. We start with the construction of the
étale regulator map

rer 1 Sp;(Zp)" — HE (X, Zyy(i)).

Fix a cohomological degree i and set M := H, (X, Z,(i)). For Hy, ..., H; €
I, let

¢ ly,
Ver(Ho, ... Hi) := Tét( L. H) €M,
KHO gHo

where r¢, : O(HL)*® — M is the étale regulator map. It is clear that
this definition is independent of the choice of the unimodular equations
for Ho, . Hz

Proposition 4.8. Leti > 1.

(1) Let 6, denote the Dirac distribution at x. There is a unique
continuous Zy-linear map

rev s DA Zy) — Hi (X, Zy(0))
such that Tét(é(Ho,.“,Hi)) = ’l,/}ét(Ho,...,Hi) for all Hy,...,H; €
I
(2) The map re; factors through the quotient Sp;(Zy)* of D(1,Z,)
and induces a natural map of Z,-modules

Ter : Sp;i(Zp)*—HE (X, Zy (7).

Proof. Uniqueness in (1) is clear since the Z,-submodule of D(#**1, Z,)
spanned by the Dirac distributions is dense.

Existence in (1) requires more work. Let {U,},>1 be the standard
admissible affinoid covering of X (see [10, proof of Th. 5.8]). Let II(n) be
the profinite étale fundamental group of U,,. Denote by RI'(II(n), Z, (7))
the complex of nonhomogenous continuous cochains representing the
continuous group cohomology of II(n). By the K(m,1)-Theorem of
Scholze [22, Th. 1.2] this complex also represents RL'¢; (U, Z,(?)). Since
the action of II(n) on Z,(1) is trivial the local étale Chern class map
factors as

&' O(U,)* — Hom(II(n), Z,(1)) — RI(I1(n), Z,(1))[1].

The global étale Chern class is represented by the composition

|

&t OX) — lim 0(U,)* — holim,, Hom(II(n), Z,(1))
RI¢ (X, Z,(1))[1] = holim, RT'(II(n), Z,(1))[1]

The étale regulator rg : O(X)*®" — RI(X,Z,(7))[i] is then repre-
sented by the cup product: 7¢; 1= c{* U--- U St
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The composition
(4.9) U, AT — 0(X)P SR (X, Zy (1)) [1]

represents the map s We claim that it is continuous. Indeed, it suffices
to show that so are the induced maps ¥; ,, : "1 — RI'(IL(n), Z,(3))[d],
for n > 1. Or, by continuty of the cup product that so are the maps
¥y . Or, simplifying further, that so are the maps

(4.10) Uy, A% = O(X) " Hom(I1(n), Z,(1)).

To show this, write S = 1'&17" I, where S, is the set of m-
equivalence classes of K-rational hyperplanes'? and set

M,, := Hom(II(n), Z,(1)).
It suffices to show that, for each k > 1, there is an m such that the map
\I’l,n,k o G & M, — Mn/pan

factors through the projection 52 — J#2. Taking into account the
construction of Wy ,, it suffices to show that, for m large enough, if two
hyperplanes Hy, H; are m-equivalent, then rg (¢, /ln,) € p*M,. But
this is clear, since in this case ¢y, /¢y, has a p™"’th root in O(U,)*,
for some constant 7, > 0 depending only on U,, and since rg is a
homomorphism, we have ¢ (€rr, /lm,) € p™™M,.

Since Hom(II(n), Z,(1)) is a Banach space and the map ¥, ,,, defined
below (4.9), is continuous on #**1, it defines, by integration against
distibutions, a continuous map

Teon : DA Z) — RO (Un, Zp(1))][1]

such that r¢e n(0(m,,... 1,)) = Yét,n(Ho, - .., Hy), for all Hy, ..., H; € 7,
where g, is the analog of ¢ for U,. The construction being com-
patible with the change of n we get the existence of the map in (1) by
setting r¢t == mrét,n and passing to cohomology.

n

For (2) we need to check the factorization of the regulator r¢ from
(1) through the quotient by the degenerate distributions. That is, we
need to show that, for any p € D(HT, Z,)deq, we have re (1) = 0. For
that, by the construction of re(u), it suffices to check that:

(1) for all Hy, ..., Hiy1 € 5, we have
(4.11)
Yoo (Hiy ooy Hit1) —ss (Hoy Hay ooy Hig1) (= 1) apee (Ho, ..o, Hy) = 0

12Recall that two hyperplanes Hi, Ha are called m-equivalent (i.e., [H;] = [Hz] €
Hom) if they have unimodular equations 1, £2 such that £; = 2 modulo @™, where
o is a uniformizer of K.
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(2) if the £, 0 < j <, are linearly dependent, v (Ho, ..., H;) = 0.

To see (1) note that we can rewrite (4.11) as
Vet (Hy, ooy Hig1) = ee(Ho, Ha, ooy Hiv1) — oo 4 (—1) et (Ho, ..., H;).
Write Y, .. n,y for Ye(Hp,, ..., Hy,, ) and ¢; for £g,;. We compute,

) MNi4+1
using the fact that r¢ is alternate (this kills terms with two ﬁ—? which
allows us to go from line 1 to line 2, and introduces signs when we move

1 in front to go from line 3 to line 4),
W1, i+l = Tét (% ®® %) = T¢t (%% - ﬁg—f)
£
—ra (B o5%)

i+1
E’ Ly Lio1 o o o bot1 o ., i Lit1
+ Tet(lo®"'® Lo ®41® Lo ® ® £o
s=2

i+1
= o2, i+1 + Z(*1)1/10,2,...,s—1,1,s+1,...,z‘+1
s=2

i+1

S =) o, s it

s=1

as wanted.

(2) follows from the fact that the étale regulator satisfies the Steinberg
relations. More precisely, if z; = ¢;/6y, 0 < j < i, where £, ...,¥; are
linear equations of K-rational hyperplanes, it suffices to show that the
symbol {z1,...,2;, 1+a1z1+- - -+a;x;} vanishes in the Milnor K-theory
group KM, (0(X)*) when a; € K. Note that the symbol {z1,...,2;,1}
vanishes. We will reduce to this case by the following algorithm.

Step 1: up to reordering we may assume that y; := (1 4+ a121) # 0
(otherwise we are done). Then, using the Steinberg relations {z,1—z} =
0 and the fact that {z,a} =0, for a € K*, we compute

_ x T; asx a;T;
{1’1, T2y y Ly, 1+a1m1+~ . +am} = {iCl, ﬁ, ey yT’ 1+%+ . +T}
. . ; 2 . .
Note that this makes sense since ~2 = .—1— € (X)* and, in fact, is
Y1 Lo+aily

again a quotient of two linear equations of K-hyperplanes.
Step 2: reorder the terms in the last symbol to make Z—f appear first

and repeat.
|

4.3.2. Integrating Ajne-symbols. Let ¢ > 1. We pass now to the Ajn¢-
regulator map

Tinf * Ainf@ZPSpi(Zl))* — Hét(%a AQ%{Z})
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that is compatible with the classical Ajy¢-regulator as well as with the
étale regulator

Ter 1 Sp;(Zp)" — Hgt(X> Z,(i))
defined above. To start, we define the regulators

Ping : D(AZ,) — HE (X, AQx{i}),
Tinf © Sp;(Zp)" — Hét(f, AQx{i})

by setting rins := Yrer, where v 1 HY, (X, Zy, (1)) — HL (X, AQx{i}) is the
canonical map from theorem 2.9 and the étale regulator

(4.12) rev s DA Zy) — Hi (X, Zy(0))
is the map defined above.

Corollary 4.13. Let ¢ > 1. The above regulators extend uniquely to
compatible continuous Aing-linear maps

Tint : Aint®z, D(AT Z,) — Hi (X, AQx{i}),
Tint : Aint®z, Sp;(Zp)* —Hi (X, AQx{i})

that are compatible with the étale regulators.

Proof. Uniqueness is clear. To show the existence, let {U,},en be the
standard admissible affinoid covering of X. For n € N, set

Tinf,n * D(%H-l’ Zp) — R/Fét(%’na 14(2‘2/,l {’L})[ZL Tinfn = YTét,n,

where %, is the standard semistable formal model of U,, (see [10, Sec.
5.1]) and the map

Tern : DA Z,) — RUs(Un, Zyp (7))
was constructed above. The map iy, factors as
Tintn @ DA Z,) — M, — RT (%, AQay, {i})][i],

where M,, := Hom(II(n),Z,(¢)) for the fundamental group II(n) of U,.
Since r¢ = holimy, 74, we have the factorization

holim,, 7s¢,n

re s DA Z,p) — lim M, holimy, RT ¢y (Un, Zy(i))[i]
b

RTe (X, Zp (2))[1]
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This induces the following composition of maps

Tinf := holimy, rinf p

Tinf - Ainf@ZpD(%iJr17 Zp) — Ainfgzp ]gln Mn ‘N> h£17L Ainf@ZpMn

The existence of the first map and of the following isomorphism is clear.
The third map exists because both Ainf@zp M, and RT (%, AQx{i})
are derived (p, p)-adically complete. This proves the existence of the
first regulator in the corollary. The existence of the second follows im-
mediately from the fact that the map (4.12) factors through Sp,(Z,)*
once we know that the sequence

0 = Aint®@z, D(A™™ ) qeg = Aint®z, D(H) = Ain®z,Sp; — 0

(with D(#T ) qeg = D(HTY Zy) deg, D(HH) = D(A#F1Z,,), and
Sp; = Sp,(Z,)*) is strict exact. This sequence is obtained from the strict
exact sequence (4.4) by tensoring with A;,¢. Hence the only question
is the strict surjection on the right, which follows from the fact that
the sequence (4.4) is actually split (since all modules are duals of free
modules). O

4.4. The Aj,r-cohomology of Drinfeld symmetric spaces. We are
now ready to prove Theorem 4.1. If i = 0 both sides of (4.2) are naturally
isomorphic to Ajus.

Let now ¢+ > 1. We will show that the map ri,¢ induces a gp’l—

equivariant topological isomorphism of Aj,¢-modules
Tinf - Ainf@szpi(Zp)* :) Hét(%, AQ%{Z})

Compatibility with the operator ¢! follows from the fact that i,
is Ajns-linear and it is induced from rg hence maps D(#T1Z,) to
HE (X, AQx{i})? "=1. For the rest of the claim, first, we show that the
induced map

Tint * (Aint®@z, Spi(Zp)*) /€ — Hi (X, AQx{i}) /¢

is a topological isomorphism. But this map fits into the following com-
mutative diagram (of Aj,s-linear continuous maps, where A;,¢ acts on O
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via 6)

Tinf

(Aint®z,9p;(Z,)") /€ —> HE (X, AQx{i}) /€

I -

Oc®z,90;(Zy)* HE (X, AQx{i}/€) )

THT

Héot(%ﬂ QZ%)

The map « is the change-of-coefficients map; it is clearly injective. The
lower right vertical map is an isomorphism because we have the local-
global spectral sequence

B3 = Hg (%, H'(AQx{i}/€)) = HM (X, AQx {3} /€)

and, by Theorem 2.8 and Theorem 2.5, the isomorphisms Ht(AQx{z}/é) ~
H'(Qx{i}) ~ Q4{i — t}. Hence, by Theorem 4.5,

Eyt = H(%,Qi—t}) =0, s>1.

The above diagram commutes by Proposition 3.3. The slanted arrow is
a topological isomorphism by Corollary 4.7. It follows that the map « is
surjective, hence it is an isomorphism and so is, by the above diagram,
the map 7inr. The latter is also a topological isomorphism because so is
the map 6 and the map gk is a continuous isomorphism.

Next, we will show that 7i,¢ being a topological isomorphism implies
that so is the original map ri,s. Let T" be the homotopy fiber of ri ;. We
claim that the complex

(4.14) T @Y%  Awme/€~0.

Indeed, since Ti,¢ is an isomorphism, it suffices to show that the domain
and the target of riy,; are &-torsion free. This is clear for the domain.
For the target, note that the distinguished triangle

AQe (i} — 5 AQ (i} — AQx{i}/E
yields an exact sequence
0 — Hi (%, AQx{i}) /§—=Hi (X, AQx /€) — HE (X, AQx{i})[] — 0.

By the above, a is an isomorphism, hence HZ™' (X, AQx{i})[¢] = 0.
Since @ > 0 was arbitrary, we deduce that, for all j > 1 and all i,
H} (%X, AQx{i}) has no &torsion, and this is clearly true for j = 0 as
well.
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Since T is derived &-complete (because so are the domain and the
target of rinr, the latter using the derived g—completeness of AQx and
the preservation of this property by derived pushforward and passage to
cohomology), by the derived Nakayama Lemma (see Section 2.1.1) we
have T'~ 0 as well. This finishes the proof that 7j,¢ is an isomorphism.

Since the domain and the target of riys are é—torsion—free and the
reduction Tiu¢ is a topological isomorphism so is 7i,¢. This finishes the
proof.

5. INTEGRAL p-ADIC ETALE COHOMOLOGY OF DRINFELD SYMMETRIC
SPACES

We are now ready to compute the integral p-adic étale cohomology of
Drinfeld symmetric spaces. Let Xy := H‘Ii( be the Drinfeld symmetric
space of dimension d over K and let X4, be its standard semistable
formal model over 0. Let X = X xg C.

Theorem 5.1. Let i > 0.

(1) There is a G x Yk -equivariant topological isomorphism
ret 2 Sp;(Zp)” = Hét(Xv Z,y(1)).
It is compatible with the rational isomorphism
Tet - Spi(zp)* ®Qp = Hét(Xa Qp(l))

from [10].
(2) There is a G x Y -equivariant topological isomorphism

Tet : Sp; (Fp)™ = Hét(X» Fy(i)).

Proof. Set X := Xp,. For i = 0 we set the regulators 74, and T¢ to be

the identity on Z, and F, (after suitable identifications), respectively.
For i > 0, using the isomorphism H{ (X, Zy(i)) = H}o50 (X, Z, (1))

[10, proof of Cor. 3.46], we pass to pro-étale cohomology. Now, by

theorem 2.9, we have a natural short exact sequence

(5.2) X

ooy T AL

(X, Z,(i)) — Hi (X, AQx{i})¥ =' 0.

By Theorem 4.1, we have a topological isomorphism

Tint : Aint®z,Sp;(Zp)* = Hi (X, AQx{i})
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and this isomorphism is compatible with the action of ¢~'. We get
topological isomorphisms

Hi (%, AQx ()7 ~' = (Aini®z,5p;(Z,)")¢ =
~ AY T8y, Spi(Zy)* = Sp,(Zy)",
HiTYE, AQ{i}) /(1 — 1) = (Aine {1} 8z, Sps_1(Zp)") /(1 — 1)
~ (Aime{1}/(1 — 97 1) Bz, p,(Zy)* ~ 0.

Hence, by the exact sequence (5.2), we get a natural continuous isomor-
phism 7prost : Sp;(Zp)* = Hémét(X, Zp(z)) Since its composition with
the natural map Héwét(X, zp(z)) 5 HL(X, AQgg{i})‘/’_lz1 is a topolog-
ical isomorphism so is the map rp.06t itself, as wanted in claim (1).

The last sentence of claim (1) of the theorem is clear (since the integral
and the rational étale regulators are compatible).

For claim (2), we define the regulator T¢; in an analogous way to its
integral version g (with which it is compatible by construction). Since
Sp;(Fp)* = Sp;(Z,)* ® F)) and Hi (X, Fy(i)) ~ Hét(XyZp(i)) ®F) (the
latter isomorphism by claim (1), which shows that HZ (X, Z,(7)) is p-
torsion free), we have T¢; ~ rg; ® Idp,. Hence, by claim (1), 7¢; is an
isomorphism, as wanted. O
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