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The p-adic local Langlands correspondence for GL2(Q)) is given by
an exact functor from unitary Banach representations of GL2(Q,)
to representations of the absolute Galois group %, of Q,. We
prove, using characteristic 0 methods, that this correspondence in-
duces a bijection between absolutely irreducible non-ordinary rep-
resentations of GL2(Q,) and absolutely irreducible 2-dimensional
representations of g, . This had already been proved, by charac-
teristic p methods, but only for p > 5.
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Let p be a prime number and let G = GL2(Q)). Let L be a finite extension
of Qp, with ring of integers €, residue field £ and uniformizer .
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Let Bangdm(L) be the category of admissible unitary L-Banach repre-
sentations of G. Any 11 € Ban%dm(L) has an open, bounded and G-invariant
lattice © and © ®¢ k is an admissible smooth k-representation of G. We say
that II in Bangdm(L) is residuall of nite length if for any (equivalently,
one) such lattice O, the G-representation © ®4 k is of finite length. In this
case the semi-simplification of © ®¢ k is independent of the choice of ©, and
we denote it by IT. We say that an absolutely irreducible! II € Bangdm(L)
is ordinar if it is a subquotient of a unitary parabolic induction of a unitary
character.

Let Rep;(G) be the full subcategory of Ban™(L) consisting of rep-
resentations Il having a central character and which are residually of fi-
nite length. Let Repy (¥g,) be the category of finite dimensional continuous
L-representations of 9y, = Gal(Q,/Qp). In [20, ch. IV] an exact, covari-
ant functor (that some people call the Montreal functor) II — V(II) from
Repy(G) to Repp(¥g,) is constructed. We prove that this functor has all
the properties needed to be called the p-adic local Langlands correspondence
for G.

Theorem 1.1. The functor II — V(II) induces a bijection between the
isomorphism classes of:

e absolutel irreducible non-ordinar TI € BanX™(L),

e 2-dimensional absolutel irreducible continuous L-representations

Of g@p .

Implicit in the statement of the theorem is the fact that absolutely irre-
ducible II € Bangim(L) are residually of finite length so that one can apply
the functor V to them.

One corollary of the theorem, and of the explicit construction of the
representation II(V') of G corresponding to a representation V' of %y (see
below), is the compatibility between the p-adic local Langlands correspon-
dence and local class field theory: we let € : 9y, — Z; be the cyclotomic
character and we view unitary characters of Q, as characters of 49, via
class field theory? (for example, ¢ corresponds to = ~ x|x|). Note that, by
Schur’s lemma [27], any absolutely irreducible object of Ban™ (L) admits
a central character.

Corollary 1.2. If II is an absolutel irreducible non-ordinar object of
Ban¥™ (L) with central character §, then V(II) has determinant .

IThis means that II ®;, L is topologically irreducible for all finite extensions L’
of L.
2Normalized so that uniformizers correspond to geometric Frobenii.
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The next result shows that the p-adic local Langlands correspondence is
a refinement of the classical one (that such a statement could be true was
Breuil’s starting point for his investigations on the existence of a p-adic local
Langlands correspondence [10]).

Let m be an absolutely irreducible, infinite dimensional, smooth L-rep-
resentation of G, and let W be an algebraic representation of G (so there
exist a € Z and k > 1 such that W = Sym* 'L? ® det?®). Let A be the
Weil representation corresponding to 7 via the classical local Langlands
correspondence; we view A as a (¢, %, )-module® [40, 13]. Let Z (A, W) be
the space of isomorphism classes of weakly admissible, absolutely irreducible,
filtered (¢, N, %, )-modules [39, Chap. 4] whose underlying (¢, %, )-module
is isomorphic to A and the jumps of the filtration are —a and —a — k: if
£ € F(A, W), the corresponding [22] representation V¢ of %, is absolutely
irreducible and its Hodge-Tate weights are a and a + k. If .# (A, W) is not
empty, then it is either a point if 7 is principal series or PY(L) if 7 is
supercuspidal or a twist of the Steinberg representation®.

Theorem 1.3. (i) If II is an admissible, absolutel irreducible, non-ordi-
nar , unitar completion of m1 @ W, then V(II) is potentiall semi-stable
with Hodge-Tate weights a and a + k and the underl ing (v, %y, )-module of
Dyt (V(II)) is isomorphic to A.

(ii) The functor II — Dy (V(II)) induces a bijection between the ad-
missible, absolutel irreducible, non-ordinar , unitar completions of T @ W
and F(A,W).

The theorem follows from the combination of theorem 1.1, [20, th. 0.20]
(or [30]), [20, th. V1.6.42] and Emerton’s local-global compatibility® ([34],
th. 3.2.22).

If p > 5, the results are not new; they were proven in [54], building
upon [20, 43], via characteristic p methods, but these methods seemed to be

3In general, this can require to extend scalars to a finite unramified extension of
L, but we assume that this is already possible over L.

4 In this last case, the filtration corresponding to co € P!(L) makes the mon-
odromy operator N on A vanish and V, is crystalline (up to twist by a character)
whereas, if £ # oo, VL is semi-stable non-crystalline (up to twist by a character).

5 It is a little bit frustrating to have to use global considerations to prove it. By
purely local considerations, one could prove it when 7 is a principal series or a twist
of the Steinberg representation. When 7 is supercuspidal, one could show that there
is a set S of (¢,%,)-modules A such that the functor II = Dy (V(II)) induces
a bijection between the admissible, absolutely irreducible, unitary completions of
7 @ W and the union of the .# (A, W), for A € S, but we would not know much
about S except for the fact that S, NS, =0 if 7 & '
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very difficult to extend to the case p = 2 (and also p = 3 in a special case).
We are able to prove the theorem in full generality by shifting to character-
istic 0 methods and using an array of results which were not available at the
time [54] was written:

e The computation [52] of the blocks of the mod p representations of G,
in the case p = 2; this computation also uses characteristic 0 methods.

e Schur’s lemma [27] for admissible Banach representations of p-adic Lie
groups, the proof of which uses results of Ardakov and Wadsley [1].

e The computation [21, 44] of the locally analytic vectors of unitary
principal series representations of G.

e The computation [30] of the infinitesimal action of G on locally analytic
vectors of objects of Rep; (G).

There are 3 issues to tackle if one wants to establish theorem 1.1: one
has to prove that absolutely irreducible objects of Ban™ (L) are residually
of finite length and bound this length, and one has to prove surjectivity and
injectivity.

1.2. Residual finiteness

Before stating the result, let us introduce some notations. Let B be the
(upper) Borel subgroup of G and let w : Q, — k™ be the character
x> x|z| (mod p). If x1, x2 : Q — k™ are (not necessarily distinct) smooth
characters, we let

m{x1, x2} = (IndGx1 ® xow ™M)=, @ (IndGye ® x1w ™),

Then 7{x1, x2} is typically of length 2, but it may be of length 3, and even
of length 4, when p = 2 or p = 3, see lemma 2.14. Recall that a smooth
irreducible k-representation is called supersingular if it is not isomorphic to
a subquotient of some representation m{x1, x2}-

Theorem 1.4. Let II be an absolutel irreducible object ofBangim(L). Then
IT is residuall of nite length and, after possibl replacing L b a quadratic
unrami ed extension, II is either absolutel irreducible supersingular or a
subrepresentation of some m{x1, x2}-

For p > 5, this theorem is proved in [54]. The starting points of the
proofs in [54] and in this paper are the same: one starts from an absolutely
irreducible mod p representation w of G and considers the projective envelope
P of its dual (in a suitable category, cf. § 2.1). Then we are led to try to
understand the ring F of endomorphisms of P, as this gives a description of
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the Banach representations of G which have 7 as a Jordan-Ho6lder component
of their reduction mod p. After this the strategies of proof differ completely
and only some formal parts of [54] are used in this paper (mainly § 4 on
Banach representations).

To illustrate the differences, let us consider the simplest case where 7 is
supersingular, so that V() is an irreducible representation of %g . The key
point in both approaches to theorem 1.4 is to prove that the ring E[1/p] is
commutative. This is done as follows.

In [54], the functor II — V(II) is used to show that E surjects onto the
universal deformation ring of V(r), which is commutative. It is then shown
that this map is an isomorphism by showing that it induces an isomorphism
on the graded rings of E and the universal deformation ring of V() with
respect to the maximal ideals. To control the dimension of the graded pieces
of gr* F/, one needs to be able to compute the dimension of Ext-groups of
mod p representations of G. These computations become hard to handle
for p = 3 and very hard for p = 2. Moreover, the argument uses that the
universal deformation ring of V(7) is formally smooth, which fails if p = 2
and in one case if p = 3.

In this paper we use the functor II — m(II), defined in [54, § 4], from
Ban¥™ (L) to the category of finitely generated F[1/p]-modules. We show
that if IT is the universal unitary completion of a locally algebraic unramified
principal series representation of G, then the image of E[1/p] — Endy(m(II))
is commutative and then show® that the map

(1) E[l/p] =  Endg(m(IL))

7

is injective, where the product is taken over all such representations. The
argument uses the work of Berger—Breuil [5], that the II; are admissible
and absolutely irreducible, and we can control their reductions modulo p
[4, 23]. The injectivity of (1) is morally equivalent to the density of crystalline
representations in the universal deformation ring of V(7), and is more or less
saying that “polynomials are dense in continuous functions”, an observation
that was used by Emerton [34] in a global context. However, in our local
situation, P is not finitely generated over 0[[GL2(Z,)]], and things are more

5We actually end up proving a weaker statement, which is too technical for
this introduction, see the proofs of corollary 2.20 and theorem 2.21. To show the
injectivity of (1) one would additionally have to show that the rings E[1/p]/ay
in corollary 2.20 are reduced. We do not prove this here, but will return to this
question in [55].
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complicated than what the above sketch would suggest; we refer the reader
to § 2.1 for a more detailed overview of the proof of the theorem.

Remark 1.5. The approach developed in [54], when it works, gives more in-
formation than theorem 1.4: one gets a complete description of finite length
objects of BanZSim(L), not only of its absolutely irreducible objects and also
a complete description of the category of smooth locally admissible represen-
tations of G on O-torsion modules. However, the fact that F is commutative
is a very useful piece of information, and, when 7 is either supersingular or
generic principal series, in a forthcoming paper [55] we will extend the results

of [54] to the cases when p =2 and p = 3.
Combining theorem 1.4 and the fact [27, cor. 3.14] that an irreducible

object of Ban%flm(L) decomposes as the direct sum of finitely many abso-
lutely irreducible objects after a finite extension of L, we obtain the following

result:

Corollary 1.6. An object of Ban&™ (L) has nite length if and onl if it is
residuall of nite length.

The following result answers question (Q3) of [20, p. 297] and is an
easy consequence of theorem 1.4, the exactness of the functor” IT — V(II)
and [20, th. 0.10].

Corollary 1.7. IfTI € Ban®™(L) is absolutel irreducible, dimy, V(IT) < 2.
1.3. Surjectivity

The surjectivity was proved in [20] (for p > 3, and almost for p = 2, see
below) by constructing, for any 2-dimensional representation V' of ¢, , a
representation II(V) of G such that V(II(V)) = V (or the Cartier dual
V of V, depending on the normalisation). The construction goes through
Fontaine’s equivalence of categories [41] between representations of % and
(p,T')-modules, as does the construction of the functor II — V(II). If D is
the (¢, I')-module attached to V' by this equivalence of categories and if ¢ is
a character of Q, one can construct a G-equivariant sheaf U +— D X5 U on
P! = PYQ,). If § = dp, where §p = e~ det V, then the global sections of
this sheaf fit into an exact sequence of G-representations

(2) 0=I(V)*®é§ - DRs P! - II(V) — 0.

The proof of the existence of this decomposition is by analytic continua-
tion, using explicit computations to deal with trianguline representations,

"More precisely, of integral and torsion versions of this functor.
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in which case II(V') is the universal unitary completion of a locally analytic
principal series [5, 9, 18, 32, 48], and the Zariski density [17, 43, 7, 15] of
trianguline (or even crystalline) representations in the deformation space
of V. That such a strategy could work was suggested by Kisin who used a
variant [43] to prove surjectivity for p > 5 in a more indirect way. This Zariski
density was missing when p = 2 and V™ is scalar: the methods of [17, 43]
prove that the Zariski closure of the trianguline (or crystalline) representa-
tions is a union of irreducible components of the space of deformations of the
residual representation; so what was really missing was an identification of
the irreducible components, which is not completely straightforward. This is
not an issue anymore as we proved [24] that there are exactly 2 irreducible
components and that the crystalline representations are dense in each of
them.

1.4. Injectivity

The following result is a strengthening of the injectivity of the p-adic local
Langlands correspondence.

Theorem 1.8. Let I1;,1ly € Ban¥™(L) be absolutel irreducible, non-
ordinar .

(1) IfV(Hl) = V(Hg), then H1 = ]._.[2.

(ii) We have Homz"[r;;t} (I1;, IIy) = Hom‘io[rg} (I1;,II3), where P is the mira-
bolic subgroup of G.

For absolutely irreducible non-ordinary objects of Banade(L), the knowl-
edge of V(II) is equivalent to that of the action of P (this is not true for
ordinary objects). So, theorem 1.8 is equivalent to the fact that we can re-
cover an absolutely irreducible non-ordinary object II from its restriction
to P. If we replace P with the Borel subgroup B, then the result follows
from [49] (see also [23, remark III1.48] for a different proof). The key dif-
ficulty is therefore controlling the central character, and, thanks to results
from [20, 23], the proof reduces to showing that dp is the only character §
such that D Ks P! admits a decomposition as in (2).

So assume D X5 P! admits such a decomposition and set 1 = 5515 . We
need to prove that n = 1 and this is done in two steps: we first prove that
n = 1 if it is locally constant, and then we prove that n is locally constant.

The proof of step one splits into two cases:

e If D is trianguline then we use techniques of [21, 28] to study locally an-
alytic principal series appearing in the locally analytic vectors in 11} and 11,
and make use of their universal unitary completions.
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e If D is not trianguline then the restriction of global sections DX P! to
any non-empty compact open subset of P! is injective on II(V)* ® §, viewed
as a subspace of DX; P! via (2). If a € 0%, let ¥* Cc DX Z, be the image

of the eigenspace of £ (1) for the eigenvalue o under the restriction to Z;'.
This image is the same for § and dp and can be described purely in terms of
D as (1 — ay) - D¥=%. Using the action of 9} on DX, P! and D K, P!
we show that the “multiplication by n” operator m, : DX Z; — D X Z;
(see n° 3.1.2 for a precise definition) sends € into €*"P), and using the
above-mentioned injectivity, that n = 1.

To prove that n is locally constant, one can, in most cases, use the
formulas [30] for the infinitesimal action of G. In the remaining cases one
uses the fact that the characters n sending € into €*"®) for all « form a
Zariski closed subgroup of the space of all characters, and such a subgroup
automatically contains a non-trivial locally constant character if it is not
reduced to {1}.

The reader will find a more detailed overview of the proof in § 3.2.

Finally, we give a criterion for II € Banade(L), absolutely irreducible,
to be non-ordinary; this refines theorem 1.4, by describing in which case
the inclusion IT° C w{x1, X2} given by this theorem is an equality. It is
a consequence of theorems 1.4 and 1.8, and of the compatibility [4, 23] of
p-adic and mod p Langlands correspondences.

Theorem 1.9. Let IT € Ban®™ (L) be absolutel irreducible. The following
assertions are equivalent

(i) V(II) is 2-dimensional.

(ii) II s non-ordinar .

(iii) After possibl replacing L b a quadratic unrami ed extension, o s
either absolutel irreducible supersingular or isomorphic to some w{x1, x2}-

1.5. Acknowledgements

V.P. would like to thank Matthew Emerton for a number of stimulating
discussions. In particular, § 2.3 is closely related to a joint and ongoing work
with Emerton.

2. Residual finiteness
2.1. Overview of the proof

If G is any p-adic analytic group, let Modg" (&) be the category of smooth
representations of G on O-torsion modules. Pontryagin duality induces an
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anti-equivalence of categories between Modgy' (&) and a certain category
Modg;°(0) of linearly compact €@-modules with a continuous G-action,
see [35]. In particular, if G is compact then Modl;°(&) is the category of
compact ¢ G -modules, where & G is the completed group algebra. Let
Mod%(€) be a full subcategory of Mod$¥ (&) closed under subquotients
and arbitrary direct sums in Modg'(&) and such that representations in
Mod?G(ﬁ’) are equal to the union of their subrepresentations of finite length.
Let C(€) be the full subcategory of Mod;°(&) antiequivalent to Modg;(€)
via the Pontryagin duality.

Let 7 € Mod (&) be admissible and absolutely irreducible, let P — 7
be a projective envelope of 7V in C(&), and let E := Endc(g)(P).

Let II € Banédm(L) and let © be an open, bounded and G-invariant
lattice in IT. Let ©¢ = Homg (0, &) be the Schikhof dual of ©. Endowed with
the topology of pointwise convergence, ©¢ is an object of Modgro(ﬁ ), see
[54, lem. 4.4]. If ©% is in C(&) then =4 is in C(&) for every open bounded G-
invariant lattice Z in II, since © and = are commensurable and C(&) is closed

adm

under subquotients, see [54, lem. 4.6]. We let Bang be the full subcategory

of Ban¥™ (L) consisting of those IT with ©¢ in C(&). For II € Bané‘%’g) we
let

m(II) := Homg ) (P, 0%) @4 L.

Then m(II) is a right E[1/p]-module which does not depend on the choice
of ©, since any two open, bounded lattices in II are commensurable. The
functor II — m(II) from Ban%‘%%‘) to the category of right E[1/p]-modules is
exact by [54, lem. 4.9]. The proposition below is proved in [54, § 4], as we
explain in § 2.2.

Proposition 2.1. Forll in Banécg‘;) the following assertions hold:

(i) m(II) is @ nitel generated E[1/p]-module;
(i1) dimy m(II) 4s equal to the multiplicit with which T occurs as a sub-
quotient of © Qg k;
(iii) 4f II is topologicall irreducible, then
a) m(Il) is an irreducible E[1/p]-module;

b) the natural map End@™ (II) — End gy, (m(I1)% is an isomor-
phism.

Let us suppose that we are given a family {TI;};c; in Ban®™(L;), where
for each 7 € I, L; is a finite extension of L with residue field k;. Let us
further suppose that each II; lies in Banécg‘;), when considered as an L-
Banach space representation. Suppose that d > 1 is an integer such that we
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can find open, bounded and G-invariant lattices ©; in II; such that m ®j k;
occurs with multiplicity < d as a subquotient of ©; ®4, k; for all i € I.
Thus 7 occurs with multiplicity < [L; : L]d as a subquotient of ©; /(@)
and proposition 2.1 yields dimy, m(Il;) < d. For simplicity let us further
assume that d = 1, then we can conclude that the action of E[1/p] induces
a homomorphism F[1/p] — Endy, (m(1l;)) = L;. If & is the kernel of this
map then F[1/p]/a; is commutative, and hence if we let a = N;cr8;, then
we deduce that E[1/p]/ais commutative. Let us further assume that a = 0.
Then we can conclude that the ring E is commutative. Let II in Bané‘%g)
be absolutely irreducible, and let & be the image of E[1/p] in Endy,(m(II)).
Since E[1/p] is commutative, so is &, and using proposition 2.1 (iii) b) we
deduce that & is a subring of End§™ (IT).

Now comes a new ingredient, not available at the time of writing [54]: by
Schur’s lemma [27], since IT is absolutely irreducible we have End&™ (I1) = L,
hence & = L. Since m(II) is an irreducible E[1/p]-module by proposition 2.1
(iii) a), we conclude that dimy m(II) = 1, and hence by part (ii) of the
proposition we conclude that 7 occurs with multiplicity 1 as subquotient of
©/w. If d > 1 one can still run the same argument concluding that 7 occurs
with multiplicity at most d as subquotient of ©/(w) by using rings with
polynomial identity.

All the previous constructions and the strategy of proof explained above
work in great generality (G was any p-adic analytic group), provided certain
conditions are satisfied, the hardest of which is finding a family {II;};c;,
which enjoys all these nice properties. From now on we let G = GL2(Q,),
and let Mod%(0) = Mod:™ (@), the category of locally admissible rep-
resentations. This category, introduced by Emerton in [35], consists of all
representations in Mod@' (&), which are equal to the union of their ad-
missible subrepresentations. For the family {II; };c; we take all the Banach
representations corresponding to 2-dimensional crystalline representations
of g, . It follows from the explicit description [4] of IT; , that 7 can occur as
a subquotient with multiplicity at most 2, and multiplicity one if 7 is either
supersingular or generic principal series.

The statement N;cra; = 0 morally is the statement “crystalline points
are dense in the universal deformation ring”, so one certainly expects it to
be true, since on the Galois side this statement is known [17, 43] to be true®.
In fact, Emerton has proved an analogous global statement “classical crys-
talline points are dense in the big Hecke algebra” by using GLa-methods,

8If we assume that p > 5 then using results of [54] one may show that the
assertion on the Galois side implies the assertion on the GL2(Q),)-side.
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[34, cor. 5.4.6]. The Banach representation denoted by II(P) in § 2.2 is a
local analog of Emerton’s completed cohomology. However, Emerton’s argu-
ment does not seem to carry over directly, since although P is projective in
Mod?>°(0), it is not a finitely generated ¢ K -module, and in our context
the locally algebraic vectors in II(P) are not a semi-simple representation
of GL2(Qy). Because of this we do not prove directly that N;a; = 0, but a
weaker statement, which suffices for the argument to work. To get around
the issue that P is not finitely generated over & K we have to perform
some tricks, see propositions 2.18, 2.19.

2.2. Proof of proposition 2.1

Proof. Part (i) is [54, prop. 4.17].

Part (ii) follows from the proof of [54, lem. 4.15], which unfortunately
assumes O%® gk to be of finite length. This assumption is not necessary: since
O is an object of C(0) we may write 0¢® 4k = lim M;, where the projective
limit is taken over all the finite length quotients. Since P is projective we
obtain an isomorphism Homc(z)(P, 0l @, k) = @Homc(ﬁ) (P, M;). Since
M; are of finite length, [54, lem. 3.3] says that dimy Homg g (P, M;) is equal
to the multiplicity with which 7 occurs in M; as a subquotient, which is
the same as the multiplicity with which 7 occurs in M,’. Dually we obtain
O ®pk = (09®y k)Y = hﬂMi\/, which allows to conclude that m occurs
with finite multiplicity in © ®¢ k if and only if dimy Homeg) (P, 0 ®4 k)
is finite, in which case both numbers coincide. Since P is a compact flat O-
module and a projective object in C(&), it follows that Homg (g (P, 0% is a
compact, flat &-module, which is congruent to Home ) (P, 0?/(w)) modulo
@, thus dimz Homg ) (P, ©%) ®4 L = dimy, Home s (P, 0% @4 k).

Part (iii) a) is [54, prop. 4.18 (ii)] and Part (iii) b) is [54, prop. 4.19]. O

2.3. Rings with polynomial identity

Definition 2.2. Let R be a (possibly non-commutative) ring and let n be a
natural number. We say that R satisfies the standard identity s, if for every
n-tuple ® = (¢1,...,¢,) of elements of R we have

sn(q)) = Sgn(0)¢a(1) cee ¢U(n) =0,

g

where the sum is taken over all the permutations of the set {1,...,n}.
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Remark 2.3. (i) Since sa(¢1,02) = 102 — P21, the ring R satisfies the
standard identity ss if and only if R is commutative.

(i) We note that R satisfies s, if and only if the opposite ring RP
satisfies s,,.

(iii) Let {a;}icr be a family of ideals of R such that ;. ;8 = 0. Then
R satisfies s, if and only if R/a; satisfies s,, for all ¢ € I.

(iv) By a classical result of Amitsur and Levitzki [46, thm. 13.3.3], for
any commutative ring A, the ring M, (A) satisfies the standard identity sa,.

Lemma 2.4. Let A be a commutative ring, n > 1 and let M be an A-module
which is a quotient of A™. Then Endy (M) satis es the standard identit Sop,.

Proof. By hypothesis there are ey,...,e, € M generating M as an A-
module. Let ¢1,...,¢o, € Enda(M) and let X1, ... XZ ¢ M,(A) be

matrices such that ¢x(e;) = 7, X](.f)ej for all # < n and k < 2n. Setting
X = 59,(XMD .., X)) for all i < n we have

n

son(P1,. .., Pan)(ei) =  Xjiej.
j=1

By remark 2.3 (iv) we have X = 0 and the result follows. O

Lemma 2.5. Let A be a commutative noetherian ring, let M be an A-
module, such that ever nitel generated submodule is of nite length, and
let n be an integer. If dim,my M[m| < n for ever mazimal ideal M of A
then End4 (M) satis es the standard identit Sop,.

Proof. The assumption on M implies that M = ©m M[M], where the sum
is taken over all maximal ideals in A and M[m>] = lim M[m"|, where
M[m"] = {m € M : am = 0,Ya € m"}. Since M[m>] is only supported
on {m}, if m # my then Hom4(M[m°], M[m$°]) = 0. Thus Ends(M) =

m End 4 (M[m>]) and it is enough to show the assertion in the case when
M = M[m], which we now assume.

Since in this case End (M) = End 4(M), where A is the mradic comple-
tion of A, we may further assume that (A, m) is a complete local ring. Let
E(k(m)) be an injective envelope of k(M) in the category of A-modules. The
functor (%)Y := Hom 4 (*, E(x(m))) induces an anti-equivalence of categories
between artinian and noetherian A-modules, see [38, thm. A.35]. Hence,
Endy (M) = Enda(MY). Since M[m| < M is essential, we may embed
M < E(x(m))® where d = dim,m) M[m]. Since E(x(m))¥ = A by [38,
thm. A.31], we obtain a surjection A®¢ — M. We deduce from lemma 2.4
that End 4 (M) satisfies the standard identity so,. O
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2.4. Density

Let K be a pro-finite group with an open pro-p subgroup. Let & K be
the completed group algebra, and let Mod}°(&) be the category of com-
pact linear-topological ¢ K -modules. Let {V;};c; be a family of contin-
uous representations of K on finite dimensional L-vector spaces, and let
M € Mody°(0).

Definition 2.6. We say that {V;};,c; captures M if the smallest quotient
M — @, such that Hom;j‘?r}t( (Q,Vr) = Homcﬁc’n]t( (M, V) for all © € I is
equal to M.

Lemma 2.7. Let N = o Ker ¢, where the intersection is taken over all

¢ € HomP" (M, V;*), for all i € 1. Then {Vi}ier captures M if and onl if
N =0.

Proof. Tt is immediate that Hom$&" (M /N, V;*) = Hom$" (M, V;*) for all
1 € I. This implies the assertion. O

Lemma 2.8. Let M’ be a closed 0 K -submodule of M. If {V;}ier captures
M, then it also captures M’.

Proof. Let v € M’ be non-zero. Since {V; }ier captures M, lemma 2.7 implies
that there exist i € I and ¢ € Hom%" (M, V;*), such that ¢(v) # 0. Thus

¢ Ker ¢ = 0, where the intersection is taken over all ¢ € HomC@?n}t( (M, VF),
for all ¢ € I. Lemma 2.7 implies that {V;};c; captures M. O

Lemma 2.9. Assume that {V;}ier captures M and let ¢ € EndS"y (M). If
¢ kills Hom$"Y (M, V;*) for alli € I then ¢ = 0.

Proof. The assumption on ¢ implies that
Homy"y (Coker ¢, V;*) = Hom@'y (M, V/"), Vi€l

Since {V; }ier captures M, we deduce that M = Coker ¢ and thus ¢ =0. O
Lemma 2.10. Let M € Mod}:°(0) be O-torsion free. Then {V;}icr captures
M if and onl if the image of the evaluation map
Hompg (V;, II(M)) ®r, V; — II(M)
i€l

is a dense subspace, where II(M) := Hom$™ (M, L) is an L-Banach space
equipped with the supremum norm.
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Proof. 1t follows from [57, thm. 1.2] that the evaluation map M xII(M) — L
induces an isomorphism

(3) M ®g L = Hom$™(II(M), L).

If ¢ € Hom%" (M, V") then ¢%(v)(m) := ¢(m)(v) defines K-equivariant
L-linear homomorphism ¢? : V; — TI(M). It follows from [57, thm. 1.2] that
the map ¢ — % induces an isomorphism

(4) Hom%" (M, V;*) = Hompg (V;, II(M)).

Let m € M and let £, be the image of m in Hom$*™(II(M), L) under (3).
Then for all i € I and all ¢ € Hom%"% (M, V), ¢(m) = 0 if and only if

lm o ¢ = 0. Using lemma 2.7 and isomorphisms (3), (4) we deduce that
{Vi}ier does not capture M if and only if the image of the evaluation map
®; Homg (V;, II(M)) @1, V; — II(M) is not a dense subspace. O

Lemma 2.11. The following assertions are equivalent:

(1) {Vi}ier captures ever indecomposable pg(ij(;ective in Mod}>°(0);

(i) {Vi}ier captures ever projective in Mod}-"(0);
(iii) {V;}ier captures 0 K .

Proof. (i) implies (ii). Let P be a projective object in Mod}>°(&). Then
P = je 7 Pj, where P; is projective indecomposable for every j € J, see
[26, V.2.5.4]. For each j € J let p; : P — P; denote the projection. Since
{Vi}ier captures P; by assumption, it follows from lemma 2.7 that Kerp; =
Ng Ker ¢ o p;, where the intersection is taken over all ¢ € Homfﬁon}{ (P, V),
for all 4 € I. Since Njes Kerp; = 0, we use lemma 2.7 again to deduce that
{Vi}icr captures P.

(i) implies (iii), as & K is projective in Mod}>°(&).

e\ o . . . . . . . TO

(iii) implies (i). Every indecomposable projective object in Modh-"(&)
is a direct summand of & K | see for example [51, prop. 4.2]. The assertion
follows from lemma 2.8. O

Let G be an affine group scheme of finite type over Z, such that G,
is a split connected reductive group over L. Let Alg(G) be the set isomor-
phism classes of irreducible rational representations of G, which we view
as representations of G(Z,) via the inclusion G(Z,) C G(L).

Proposition 2.12. Alg(G) captures ever projective object in Modg(ozp)(ﬁ).
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Proof. The proof is very much motivated by [34, prop. 5.4.1], which implies
the statement for G = GLy. Let K = G(Z,) and let € (K, L) be the space
of continuous functions from K to L. Since K is compact, the supremum
norm makes ¢ (K, L) into a unitary L-Banach representation of K. It is
shown in [57, lem. 2.1, cor. 2.2] that the natural map K — 0 K , g~ g
induces an isometrical, K-equivariant isomorphism between %' (K, L) and
Hom%™ (¢ K ,L). It is shown in [52, prop. A.3] that the image of the eval-
uation map @ Homg (V, € (K, L))®V — € (K, L) is a dense subspace, where
the sum is taken over all V' € Alg(G). Lemma 2.10 implies that Alg(V') cap-
tures 0 K , and the assertion follows from lemma 2.11. O

2.5. Locally algebraic vectors in II(P)

From now on let G = GL2(Q,), K = GL2(Zy), and let m be an admis-
sible smooth, absolutely irreducible k-representation of G. Recall that if
X1, x2 : Q) — k™ are smooth characters, then

m{x1, x2} == (IndFx1 ® yow ™ HE, @ (IndGxe @ xiw ),

Definition 2.13. If 7 is supersingular, let d(7) = 1. Otherwise, there is a
unique m{x1, x2} containing = and we let d(7) be the multiplicity of 7 in

7T{X17X2}-

Lemma 2.14. Let x1,x2 : Q) — k* be smooth characters. Then m{x1,x2}
s isomorphic to one of the following:

(i) (Indf x1 ® xow s © (IndF x2 @ x1w Ham, if x1xz " # Lw™;
(i) (Ind x ® xw N2, if x1 = xo = x and p > 3;
(iii) (1@ Sp@Indgw ®w™ ) ® x odet, if X1X2—1 = wtl and p > 5;
(iv) (1@ Sp@w o det ® Sp ®w o det) @ x o det, if x1x5 = = w*! and p = 3;
(v) (1®Sp)®? ® xodet if x1 = x2 and p = 2.

In particular, d(w) = 1 unless we are in one of the following cases, when
d(m) =2:

(a) p>3 and 7 = (Indf x @ xw " )sm or
(b) p = 2 and either m = x odet or 7 = Sp®y o det, for some smooth
character x : Q) — k*.

Proof. The representation (Indg X1 ® Xxow Hem is irreducible if and only if
X1 # xow™ !, otherwise its semi-simplification consists of a character and a
twist of the Steinberg representation, see [2, thm. 30]. The result follows. [
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Let Modléadm(ﬁ) be the category of locally admissible representations
introduced by Emerton in [35]. Proposition 2.2.18 in [35] shows that this cat-
egory is closed under subquotients and arbitrary direct sums in Mod@* (&),
and theorem 2.3.8 in [35] implies that every locally admissible representation
is a union of its subrepresentations of finite length. So Mod:4™ (&) satisfies
the conditions imposed on Mod} (&) in § 2.1. Let C(€) be the full subcate-
gory of Mod2°(&), which is anti-equivalent to Mod™ (&) via Pontryagin
duality. We have Bang%g}) = Ban¥™(L).

Let P — 7 be a projective envelope of 7V in C(&) and let
FE = Endc(ﬁ)(P).

Then 7 < PV is an injective envelope of 7 in Mod{d™ (&). The following
result is [36, cor. 3.10].

Proposition 2.15. The restriction of PV to K is injective in Modi'(0),

pro

hence P is projective in Mod:"(0).
In particular?, P is a torsionfree, compact linear-topological &-module.
Let
II(P) := Hom&™ (P, L)
with the topology induced by the supremum norm. If II is an L-Banach
space and if © is an open, bounded lattice in II, let ©% := Homg(0, 0)
be its Schikhof dual. Equipped with the topology of pointwise convergence,

©% is a torsionfree, compact linear-topological ¢-module and it follows from
[57, thm. 1.2] that we have a natural isomorphism:

(5) Hom$*™ (I, II(P)) = Hom$&™ (P, ©%) @, L.

We want to use (5) in two ways, which are consequences of [57, thm. 2.3]. If
IT is an admissible unitary L-Banach representation of G and © is an open,
bounded, G-invariant lattice in II, then ©% is in C(&) and we have:

(6) Hom{&™ (IT, T1(P)) = Home (P, 0%) @0 L = m(II)

On the other hand, if V' is a continuous representation of K on a finite
dimensional L-vector space and if © is a K-invariant lattice in V', then

(7)  Homg(V,II(P)) = Hom%™. (P,0%) @4 L = Hom$%™ (P, V*).

9 Alternatively one may argue in the same way as in [54, cor. 5.19].
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We note that since V is finite dimensional any L-linear map is continuous.

Let Alg(G) be the set of isomorphism classes of irreducible rational rep-
resentations of GLg /L, which we view as representations of GLy(Zj) via the
inclusion GLy(Z,) C GLy(L). For V € Alg(G) let Ay := Endg(c-Ind$ V).
It follows from [8, rem. 2.1.4.2] that Ay = Endg(c-Ind$ 1) = L[t, 2*!]. In
particular, Ay is a commutative noetherian ring. Frobenius reciprocity gives

Homp (V,II(P)) = Homg(c-Ind$ V, II(P)).

Hence, Homg (V,II(P)) is naturally an Ay-module. We transport the action
of Ay onto Hom%". (P, V*) via (7).

Proposition 2.16. Let V € Alg(G) and let m be a maximal ideal of Ay .
Then

dim,;(y) Homg (£(M) ®a4,, c-Ind% V, II(P)) < d(m).
Proof. Tt follows from [8, prop. 3.2.1] that

(8) k(M) ®4, -Ind¥ V = (Ind% 61 @ 02| - | e @1V,

where d1,d2 : Q) — r(m)* are unramified characters with d1] - | # 2 and
the subscript sm indicates smooth induction. Let II be the universal unitary
completion of (M) ® 4, c-Ind$ V. Since the action of G on II(P) is unitary,
the universal property of II implies that

(9)  Homg(k(M) @4, c-Ind% V,TI(P)) = Hom&"(IT, TI(P)) = m(II).

It is proved in [52, prop. 2.10], using results of Berger—Breuil [5] as the
main input, that II is an admissible finite length «(m)-Banach representa-
tion of G. Moreover, if IT is non-zero then II"° is either irreducible supersin-

gular, or II"° C m{x1, x2} for some smooth characters x1, x2 Q) — k::(m).

Lemma 2.14 implies that m®jk,m) can occur in IT”° with multiplicity at most
d(m). Hence, if © is an open, bounded and G-invariant lattice in II, then 7 can
occur as a subquotient of ©/(w) with multiplicity at most [x(m) : L]d(r).
Proposition 2.1 (ii) yields dimz m(II) < [k(m) : L]d(m). The result follows
from (9). O

Corollary 2.17. For all V € Alg(G) and all mazimal ideals m of Ay we
have

dim,,(m) Hom@" (P, V*)[m] < d().
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Proof. By (7) we have Hom%" (P, V*)[m| 2 Homg (V,II(P))[m]. On the
other hand, Frobenius reciprocity gives an isomorphism

Hom (V,II(P))[m] = Homg (c-Ind% V, II(P))[m]

(10) = Home(k(m) ® 4, ¢-Ind V. II(P)).

The result follows therefore from proposition 2.16. O
2.6. Proof of theorem 1.4

Proposition 2.18. Let ¢ : P — M be a quotient in C(O), such that M is
of nite length. Then ¢ factors through ¢ : P — N in C(0), such that N is
a nitel generated projective & K -module.

Proof. We claim that there exists a surjection 6 : N — M in C(0) with N a
finitely generated projective & K -module. The claim implies the assertion,
since the projectivity of P implies that there exists ¢ : P — N, such that
0 o 1) = ¢. The proof of the claim is a variation of the construction, which
first appeared in [47], and then was generalized in [12] and [36]. Let G° =
{9 € G : detg € Z;} and let Gt = ZGY, where Z is the centre of G.
Since MV is of finite length in Mod:4™ (), MV is admissible. It follows
from [36, thm. 3.4] that there exists an injection M"Y < Q in Mod¥™ (&),
such that MV|x < Q|k is an injective envelope of M in Mod}*(&) and
Q = Q°, where Q¢ denotes the action of GY twisted by conjugation with
an element 2 . Dually we obtain a continuous, G-equivariant surjection
6% : QV — M, such that its restriction to K is a projective envelope of M
in Mod}>°(0).

We let A := O[t,t71] act on M by letting ¢ act as the matrix gg . Since
M is a quotient of P, its cosocle in C(¢&) is isomorphic to 7V, and hence is
irreducible. This implies that M is indecomposable. Moreover, M is finite
length by assumption. The argument of [36, cor. 3.9] shows that there exists
a monic polynomial f € &[t] and a natural number n, such that (w, f) is a
maximal ideal of A, and the action of A on M factors through A/(f™). Since
f is monic A/(f™) is a free &-module of finite rank. Hence, the restriction
of Nt := A/(f") ®¢ QY to K is a finite direct sum of copies of 2V, which
implies that N7 is a finitely generated projective ¢ K -module. We put an
action of Gt on N T by using G = 82 “ %GO, The map t®@v — 69 82 v)
induces a GT-equivariant surjection 8% : Nt — M. Let N := IndG, NT,
then by Frobenius reciprocity we obtain a surjective map 6 : N — M. Since

GT is of index 2 in G, and 2 é is a representative of the non-trivial coset,
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we have N|g+ € Nt & (NT)° = N* & NT, where the subscript ¢ indicates
that the action of G is twisted by conjugation with 2(1] , and the last
isomorphism follows from 2 = Q€. Hence, N satisfies the conditions of the
claim. O

If V is a continuous representation of K on a finite dimensional L-vector
space and if © is an open, bounded and K-invariant lattice in V, let | .| be
the norm on V* given by |¢| := sup,ce |¢(v)], so that ©¢ = Homg(0, 0) is
the unit ball in V* with respect to | .|. The topology on Hom$™ (P, V*)
is given by the norm |[|¢|| := sup,cp |¢(v)|, and Hom$™- (P, @d) is the unit
ball in this Banach space.

Proposition 2.19. For all V' as above the submodule
Hom%"% (P, V*)1in := {6 € Hom$"% (P, V*) : £, (Ay¢) < oo}

is dense in Hom$" (P, V*), where {a, (Av¢) is the length of Av¢ as an
Ay -module.

Proof. Let A= Ay. It is enough to show that for each ¢ € Hom%™"% (P, o)
and each n > 1 there exists 1, € Hom%™ (P, ©%) such that the A-submod-
ule generated by ), is of finite length, and ¢ =1, (mod w™).

Let ¢,, be the composition P %ol ©?/(w™). Dually we obtain a map
v (04/(w™))¥ — PV. Let 7 be the G-subrepresentation of PV generated
by the image of ¢\. Since PV is in Mod:4™ (&) any finitely generated G-
subrepresentation is of finite length. Since (09/(xw™))Y is a finite &-module,
we deduce that 7 is of finite length. Thus ¢, factors through P — 7V in
C(0), with 7V of finite length. Proposition 2.18 implies that this map factors
through ¢ : P — N with N finitely generated and projective & K -module.
Since N is projective, using the exact sequence

0-07% 0l - 0/(x") — 0,

we deduce that there exists 6, € Hom$%" (N, ©%), which maps to ¢, €
Hom%™: (N, ©%/(w™)). Let 1, = 60, o ¢. Then by construction ¢ = 9,
(mod w™). Since 1 is G-equivariant, Hom%" (N, V*) ¢ Hom%" (P, V*)
is a map of A-modules, which contains 1, in the image. Since N is a finitely

generated ¢ K -module, Hom$™"- (N, V*) is a finite dimensional L-vector
space, thus the A-submodule generated by 1)y, is of finite length. O
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Corollary 2.20. Letay be the E[1/p]-annihilator of Hom$™ (P, V*). Then
E[1/p]/ay satis es the standard identit saq) (see de nition 2.13 for d(m)).

Proof. Since the action of E preserves the unit ball in Hom‘;’n}( (P, V*),

E[1/p] acts by continuous endomorphisms, which commute with the ac-

tion of Ay. It follows from proposition 2.19 that E[1/p]/ay injects into
cont

Enda, (Hom$"% (P, V*)1n). It follows from proposition 2.16 and lemma 2.17
that

diIn.Lt(m) Homcﬁon[t( (Pv V*)l.ﬁn[m] < d(ﬂ'),
for every maximal ideal m of Ay . The assertion follows from lemma 2.5. [

Theorem 2.21. Let II be a unitar admissible absolutel irreducible L-Ba-
nach space representation of G and let © be an open bounded G-invariant
lattice in II. Then m occurs with multiplicit < d(m) as a subquotient of
O®e k.

Proof. Let d = d(m), then it is enough to prove that dim; m(II) < d by
proposition 2.1 (ii). It follows from propositions 2.15 and 2.12 that Alg(G)
captures P, and lemma 2.7 (ii) implies that . Alg(c) @ =0, where ay is
defined in corollary 2.20. We deduce from corollary 2.20 and remark 2.3 that
E[1/p] satisfies the standard identity soq. Thus, if & is the image of E[1/p]
in Endz(m(II)), then & satisfies the standard identity so4.

Since II is irreducible, it follows from proposition 2.1(iii)a) that m(II)
is an irreducible &-module, which is clearly faithful. Proposition 2.1(iii)b)
shows that Endg(m(I1)) = End®™(II)°P. On the other hand, since II is
absolutely irreducible, Schur’s lemma [27, thm. 1.1.1] yields End&™(II) = L,
hence Endg(m(II)) = L. A theorem of Kaplansky, see [56, thm. II.1.1] and
[56, cor. I1.1.2], implies that dim; m(II) < d, which is the desired result. [

Corollary 2.22. Let m be an absolutel irreducible smooth representation
and let P — " be a projective envelope of ©V in C(O), where C(O) is the
Pontr agin dual of Mod:4™(&). If one of the following holds:

i) mw is supersingular;

G 1
(Ind% x1 ® x2w ™ Hsm and x1x5 = # w
(Indg W ® xw V)sm and p > 5;

(iv) m 2 Sp®yx odet and p > 3;
v) m = xyodet and p > 3;
X

+1 .
’ 1}

>~
>~

then the ring E := Endg(g)(P) is commutative.

Proof. In these cases d(m) = 1, and the assertion follows from the proof of
theorem 2.21 and remark 2.3. O
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Corollary 2.23. Let II be a unitar admissible absolutel irreducible L-Ba-
nach space representation of G and let © be an open bounded G-invariant
lattice in II. Then © ®4 k is of nite length. Moreover, one of the following
holds:

(i) ©® ®¢ k is absolutel irreducible supersingular;
(il) © ®¢ k is irreducible and

O ®p 12 (IndE X ® x7w ™ sm @ (IndE X7 @ xw ™ sm

where 1 is a quadratic extension of k, x : Q; — I is a smooth charac-
ter and x° is a conjugate of x b the non-trivial element in Gal(l/k);
(iil) (O®gk)** C m{x1, X2} for some smooth characters x1,x2 : Q) — k™.

Proof. Let m be an irreducible subquotient of © ®4 k. If 7’ is another irre-
ducible subquotient of ©®4k then 7 and 7’ lie in the same block by [54, prop.
5.36], which means that there exist irreducible smooth k-representations
T = m,..., T, = 7, such that for all 0 < ¢ < n either Exté(m,mﬂ) #0
or EXté(ﬂ'i+1, m;) # 0. The blocks containing an absolutely irreducible rep-
resentation have been determined in [52], and consist of either a single su-
persingular representation, or of all irreducible subquotients of 7{x1, x2} for
some smooth characters x1,x2 : Q, — k™. These irreducible subquotients
are listed explicitly in lemma 2.14. If 7 is absolutely irreducible, it follows
from theorem 2.21 that if 7 is supersingular then (i) holds, if 7 is not su-
persingular then the multiplicity with which 7 occurs as a subquotient of
© ®g k is less or equal to the multiplicity with which 7 occurs in 7{x1, x2},
which implies that (iii) holds. If 7 is not absolutely irreducible, then arguing
as in the proof of corollary 5.44 of [54] we deduce that (ii) holds. O

3. Injectivity of the functor IT  V(II)

In this chapter we prove theorems 1.8 and 1.9 as well as their consequences
stated in the introduction. After a few preliminaries devoted to the the-
ory of (¢,I')-modules and various constructions involved in the p-adic local
Langlands correspondence [20], we give a detailed overview of the (rather
technical) proofs. We then go on and supply the technical details of the
proofs.

3.1. Preliminaries

3.1.1. (¢p,T')-modules. Let O¢ be the p-adic completion of [[T]][T~!],
& = Og[p™1] the field of fractions of Os and let Z be the Robba ring,
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consisting of those Laurent series ., a, 7™ € L[[T,T~']] which converge
on some annulus 0 < v,(T') < r, where r > 0 depends on the series.

Let ®T°*(&) be the category of étale (¢, I')-modules over &. These are
finite dimensional &-vector spaces D endowed with semi-linear'® and com-
muting actions of ¢ and I' = Gal(Qp(yp )/Qp) (isomorphic to Z; via ¢),
such that the action of ¢ is étale'!. Each D € ®I'*'(&) is naturally endowed
with an operator 1, which is left-inverse to ¢ and commutes with I

The category ®I'*(&) is equivalent [41] to the category Repy(%g,) of
continuous finite dimensional L-representations of % . Cartier duality'? on
Rep;,(%g,) induces a Cartier duality D — D on ®I'°%(&). All these con-
structions have integral and torsion analogues, which will be used without
further comment.

The category ®I'°*(&) is equivalent, by [16, 6] and [42], to the category
of (¢,I')-modules of slope 0 on Z. For D € ®I'°*(&) we let Dyig be the
associated (¢, I')-module over Z.

3.1.2. Analytic operations on (¢, T')-modules. The monoid PT =
(ZPTJ{O} Zr) acts naturally on Z, by (&4)z = ax +b. Any D € dT°(&)
carries a P action, defined by

pg“ 11’ 2= (14T)%" 0 0,(2)
fora € Z;,b € Zy and k € N.

D also gives rise to a PT-equivariant sheaf U — D X U on Z,, whose
sections on i+ p*Z, are (%k !)D C D = DR Z, and for which the restriction
map Res;ypez, 1 DRZ, — DR (i+p*Z,) is given by (§1)opPoyko (L 70).

Let U be an open compact subset of Z, and let ¢ : U — L be a continuous
function. By [19, prop. V.2.1], the limit

mg(z) = lim o ¢(i)Resiyprz, (2)

exists for all z € DXU, and it is independent of the system of representatives
In(U) of U mod p". Moreover, the resulting map mg : DXU — DX U is
L-linear and continuous.

10T he rings O , &, Z are endowed with a Frobenius ¢ and an action of I" defined
by o(T) = (1+T)? —1and 0,(T) = (1+T)* — 1, where o, € I satisfies e(0,) = a.

"This means that the matrix of ¢ in some basis of D belongs to GL4(0g ), where
d = dimg (D).

128ending V to V := V* ® ¢, where V* is the L-dual of V.
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In the same vein [19, prop. V.1.3], if U, V are compact open subsets of Z,
and if f : U — V is a local diffeomorphism, there is a direct image operator

‘ L N L

f« :DRU - DNV, f(z)= ]\}gnoo fé’) fgl) Respnz, (g7 2)-
i€lN (U)

The following result (see § V.1 and V.2 in [19]) summarizes the main prop-

erties of these operators (which also have integral and torsion versions, see

loc.cit.).

Proposition 3.1. Let U,V be compact open subsets of Zj.
a) For all continuous maps ¢1,$2 : U — L we have my, omy, = my, 4,.
b) If f : U — V is a local di eomorphism and ¢ : V — L is continuous,
then

f* o m¢of == m¢ o f*
c)If f:U — Vand g :V — W are local di eomorphisms, then
g« fie = (g0 f)
d) If ¢ : U — L is a continuous map and V C U, then mgy commutes

with Resy .

e) If ¢ : Zy — L is constant on a + p"Zy for all a € Z), then

me = ¢(i)Resi+anp.
ic(z2/prz)

3.1.3. From GL;(Qp) to Gal(Qp/Qp)-representations and back. Let
G = GL2(Qp). We refer the reader to the introduction for the definition of
the category Rep; (G), and to [20, ch. IV] (or to [23, § III.2] for a sum-
mary) for the construction and study of an exact and contravariant functor
D : Rep;(G) — ®I'**(&). Composing this functor with Fontaine’s [41] equiv-
alence of categories and Cartier duality, we obtain an exact covariant functor
IT — V(II) from Rep(G) to Repy(Gg,). We will actually work with the
functor D, even though some results will be stated in terms of the more
familiar functor V.

In the opposite direction, § being fixed, there is a functor from ®I'°*(&)
to the category of G-equivariant sheaves of topological L-vector spaces on
P! = PY(Q,) (the space of sections on an open set U of P! of the sheaf
associated to D is denoted by DX U). If D € ®T'°*(&), then the restriction
to Z, of the sheaf U — D Kj; U is the PT-equivariant sheaf attached to D
as in n° 3.1.2 (in particular it does not depend on 6). The space D Ks P! of
global sections of the sheaf attached to D and 9§ is naturally a topological
G-module.
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Definition 3.2. If § : Q) — 0 is a unitary character then we let Rep, ()
be the full subcategory of Rep; (G) consisting of all representations with
central character 6 and we let .#.7 () be the essential image of D|geyp, (s)-

The following result is a combination of the main results of [23, chap. III].

Proposition 3.3. If 6 : Q) — 0 is a unitar character then there is a
functor

MF (61 = Rep(6), D+ (D)

such that for all D € .4 F(571), the following hold:
(i) If n is a unitar character, then'® D(n) € 4 F (n~25') and

I,25(D(n)) = 1L5(D) @ (n o det).

(ii) D € .4 .F(5) and there is an exact sequence'*
0 — M1 (D)* — D Xs Pt — TI5(D) — 0.

(iii) There is a canonical isomorphism D(II5(D)) = D.
(iv) If dim(D) > 2, then D is irreducible if and onl if ls(D) is irre-
ducible.

All these constructions have natural integral and torsion variants, which
will be used without further comment: for instance, if Dy is an Og-lattice
in D € .#%(57') which is stable by ¢ and T', then II5(Dg) is an open,
bounded and G-invariant lattice in II5(D).

The next result is the main ingredient for the proof of the surjectivity
of the p-adic Langlands correspondence for G (cf. § 1.3). Note that if D €
PI° (&), then det D corresponds by Fontaine’s equivalence of categories to a
continuous character of g , which in turn can be seen as a unitary character
det D : Q) — 0 by local class field theory. We define

op: Q) = 0%, 6p=c'detD.

Proposition 3.4. If D € ®T°(&) is 2-dimensional, then D € .4 F (6},").

Proof. This is a restatement of [24, th. 10.1]. O

13D(n) is the (p,T')-module obtained by twisting the action of ¢ and I' by 7.
10Of topological G-modules, where Iss1 (D)* is the weak dual of Ilss1 (D).
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3.2. Uniqueness of the central character

In this § we explain the steps of the proof of the following theorem, which
is the main result of this chapter.

Theorem 3.5. Let D € ®T°(&) be absolutel irreducible, 2-dimensional.
If D€ #F(571) for some unitar character §, then § = ép.

For the rest of this § we let D € ®I'°(&) be as in theorem 3.5. Let
D™ be the set of z € D such that the sequence (¢™(z))n>0 is bounded
in D. The module DT is the largest finitely generated &*-submodule of D,
stable under ¢ and I'. We say that D is of nite height if DT spans D as
&-vector space or, equivalently (since D is irreducible) if DT # {0}. The
classification of representations of finite height given in [3] shows that if D
is of finite height, then D is trianguline'®, so it suffices to treat the cases “D
trianguline” and “D* = {0}".

3.2.1. The trianguline case. Suppose that D is trianguline and recall
that 6p = e !'det D is seen as a unitary character of Q, - Suppose that
D € #F(571) for some unitary character 6. Let Il = Il5(D) and define
n = 5515. Also, let II*™ be the space of locally analytic vectors of 1I, for
which we refer the reader to [58] and [33].

We first prove that n is locally constant. The argument works for a
much more general class of (¢, ')-modules, namely those corresponding to
representations which are not Cp-admissible!® up to a twist (this condi-
tion is automatically satisfied by irreducible trianguline (¢, I")-modules [17,
prop. 4.6]). The proof uses two ingredients

e By [23, chap. VI] and the hypothesis D € .#.% (67 1), there is a G-
equivariant sheaf of locally analytic representations U + D,z XU attached
to (Drig7 5)

e Using [29, 30], one can describe the action of Lie(GL2(Qp)) on the
space D,y M5 P! of global sections of this sheaf. The fact that 7 is locally
constant follows easily.

The second part of the proof in the trianguline case consists in analyzing
the module Dy Xs P!. More precisely, we prove (lemma 3.20) that any
triangulation 0 — Z(01) — Dyig — Z(d2) — 0 of Dy extends to an exact
sequence of topological G-modules

0 — Z(01) K5 P! — Dyig Ks P — 2(52) K5 Pt — 0.

15 Actually, more is true but will not be needed in the sequel: D is of finite height
if and only if D € .7, where . is defined in n® 3.3.1.
16That is, de Rham with Hodge-Tate weights equal to O.
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Actually, once we know that 7 is locally constant, the arguments of [21, 28]
(where the case n = 1 is treated) go through without any change.

Using the description of the Jordan-Holder components of %(6;1) X5 P!
(cf. [21]), we deduce (lemma 3.21) the existence of a morphism with finite
dimensional kernel B*"(d1,nmd2) — II*", where B*"(d1,n02) is the locally
analytic parabolic induction of the character nds ® e ~16;. Finally, using uni-
versal completions, we prove that the morphism B*"(d;,nd2) — II*" induces
a nonzero morphism II;(D’) — II for some G-compatible pair (D', d), where
D' is a trianguline (¢, I')-module having a triangulation

0 — #(61) = Dy = Z(nd2) — 0.

This is the most technical part of the proof and uses results from [18, 21, 5]
(and [48] suitably extended for p = 2). Since D and D’ are irreducible, the
representations II5(D’) and II are admissible and topologically irreducible,
hence the morphism IIs(D’) — II must be an isomorphism. Using parts
(i) and (iv) of proposition 3.3, we deduce that D’ = D. In particular
det Dyjg = det Dl’dg, which yields 0162 = d152m, hence n = 1, and finishes the
proof in the trianguline case.

3.2.2. The case D* = {0}. Let us assume now that D € ®I'**(&) is
2-dimensional and satisfies D™ = {0} (then D is automatically absolutely
irreducible). For each o € 0 let

€ = (1 — ap) DV=2,

If D € .#%(x ') for some character x : Q) — 0, then setting I =

II,s:(D) we have II* ¢ D X, P! (proposition 3.3), and there is a canonical
isomorphism of O[[I']][1/p]-modules [23, rem. V.14(ii)]

S1

. 0 _
(11) Res,; (IT7) 01 =) = @2,

Suppose now that D € .#.Z(57') and let n = 6,'6. Unravelling the
isomorphism (11) for x = dp and x = &, we obtain the following key fact

Proposition 3.6. For all a € 0% we have m,(€*) = ¢°"P).
Proof. If x € {6p,d}, let wy, be the restriction to D¥=0 = D K, ZX of the
action of w = (9§) on IL,s:(D)* € DX, PL. Proposition V.12 of [23] shows

that w, (€¢*) = %5 for all @ € 6%. On the other hand, remark II.1.3 of
[20] and part b) of proposition 3.1 yield w, = w, om, and
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W5, © W5 = Wx O Mg, O Wy O MG = MgS1 O Wy O Wy O Mg = MgS 15 = My,

as wy o wy = (w o w), = id. The result follows. O

In view of proposition 3.4, theorem 3.5, in the case DT = 0, is equivalent
to the following statement.

Proposition 3.7. We have n = 1.
Proof. Let 11(Qp) be the set of roots of unity in Qp, let

To(L) = Homeont (Q /1(Qp), 1 +my)

be the set of continuous characters x : Q) — 1+ my, trivial on u(Qj), and
let

H={x e I%L)|my(¢*) =€*P VYaecl+m}

Proposition 3.31 below shows that H is a Zariski closed subgroup of .70 (L)
and it follows from corollary 3.35 that H is either trivial or it contains
a nontrivial character of finite order (this may require replacing L by a
finite extension, which we are allowed to do). We haven’t used so far the
hypothesis Dt = {0}, but only the fact that D is absolutely irreducible of
dimension > 2. When Dt = {0}, we prove (corollary 3.26) that H cannot
contain nontrivial locally constant characters. We conclude that H = {1},
which implies that 7 is of finite order (since any power of 77 which belongs to
Z9(L) actually belongs to H by proposition 3.6). We conclude that = 1
using again corollary 3.26. O

Remark 3.8. Assume that the Sen operator on D is not scalar'”. Propo-
sition 3.16 shows that n is locally constant, and proposition 3.6 and corol-
lary 3.26 yield directly the desired result n = 1. The key proposition 3.16
does not work if the Sen operator is scalar, which explains the more indirect
approach presented above.

3.2.3. Consequences of theorem 3.5. Before embarking on the proof
of theorem 3.5, we give a certain number of consequences of theorems 1.4
and 3.5.

If D € ®I°(&), we let D™ be the semi-simplification of Dy ®¢ k, where
Dy is any Og-lattice in D which is stable under ¢ and I'.

"By Sen’s theorem, this is equivalent to saying that inertia does not have finite
image on the Galois representation associated to D.
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The functor II — V(II) has integral and torsion versions, and if © is
an open, bounded and G-invariant lattice in II € Rep;(G), then V(0) =
Im V(6/@") and V(0)/w™ =2 V(0/w"™) for all n > 1. The following
result follows from [20, th. 0.10] (see the introduction for the definition of
m{x1, x2})-

Lemma 3.9. If 7 is either supersingular or w{x1,x2} for some smooth
characters x1,x2 : Qp — k>, then dimy V(m) = 2. Moreover, if 7 is an
irreducible subrepresentation of m{x1, x2}, then dimy V() < 1.

We will also need to following compatibility between the p-adic and
mod p Langlands correspondences. This was first proved (in a slightly differ-
ent form) in [4]. We will use the following version, taken from [23, prop. I11.55,
rem. I11.56].

Proposition 3.10. If D € ®I'°(&) is 2-dimensional and if § = dp, there is
an isomorphism Ig(D)" = 15(D™) and (possibl after replacing L with its
quadratic unrami ed extension) this representation is either absolutel irre-
ducible supersingular or isomorphic to w{x1, x2} for some smooth characters
X1, x2: Qy — k.

Proposition 3.11. Let D = D(II) with II € Rep;(d) absolutel irreducible.
Then dimge D < 2 and D 1is absolutel irreducible. Moreover, dim D = 2 if
and onl if Il is non-ordinar .

Proof. The functor D being exact, we have D™ = D(IT"). Combined with
theorem 1.4 and lemma 3.9, this yields dim D < 2.

Next, if II is ordinary, then IT® is a subquotient of a smooth parabolic
induction and using lemma 3.9 again we conclude that dim D < 1. In par-
ticular, D is absolutely irreducible. If II is not ordinary, we deduce from
[23, cor. I11.47] and the first paragraph that D is absolutely irreducible and
2-dimensional. The result follows. O

Corollary 3.12. IfII € Repy(0) is absolutel irreducible non-ordinar , then
§ = 6p (my- Thus det V(II) = 0.

Proof. This follows directly from proposition 3.11 and theorem 3.5. O

Theorem 3.13. Let D = D(II) with II € Rep;(d) absolutel irreducible.
The following assertions are equivalent

(i) II s non-ordinar .

(ii) dimg D = 2.

(iii) After possibl replacing L b its quadratic unrami ed extension, o’
is absolutel irreducible supersingular or isomorphic to some w{x1, x2}.

If these assertions hold, there is a canonical isomorphism 11 =2 Hg(D).
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Proof. (i) and (ii) are equivalent by proposition 3.11. Suppose that (iii)
holds. Then D™ = D(ﬁss) is 2-dimensional by lemma 3.9 and so dim D = 2,
that is (ii) holds. Finally, suppose that (i) holds. Then [23, cor. II1.47] yields
a canonical isomorphism II 2 TIs(D) and we conclude that (iii) holds using
proposition 3.10. O

Theorem 3.14. Let 114,115 be absolutel irreducible, non-ordinar .

(i) If V(II;) = V(Ilp), then 11} = I1,.

(ii) We have HomCLO[rISt} (I1;,IIy) = Hom‘io[gt} (I1;,I3), where P is the mira-
bolic subgroup of G.

Proof. 1f V(II;) =2 V(IIy) = V, corollary 3.12 shows that II; and IIs have
the same central character § and theorem 3.13 yields IT; = Ty = TI5(D(V)).

Let f : II; — IIy be a P-equivariant linear continuous map and let
D; = D(II;). Since the functor D uses only the restriction to P, f induces
a morphlsm D(f) : Do — Dy in ®I'°*(&). Since Dy and Do are absolutely
irreducible (proposition 3.11), D(f) is either 0 or an isomorphism. If D(f) is
an isomorphism, §; = d2 by part (i), and we conclude that f is G-equivariant
using the following diagram, in which the vertical maps are the isomorphisms
given by theorem 3.13 and the map IIs (D;) — Ils, (D3) is G-equivariant
since induced by functoriality from the transpose of D(f)

The case D(f) = 0 is slightly trickier, since we can no longer use part (i)
of the theorem to deduce that II; and Il have the same central character. We
will prove that f = 0. Let ©; be the unit ball in IT; and let X; = Reszp(@?),
where we use the inclusions II7 C D; &%sq P! (proposition 3.3). It follows
from [23, cor. II1.25] that the restriction of Resq, : D; &55 1Pt = D &55 1 Qp
to H 1nduces a P-equivariant isomorphism of topologlcal vector spaces H* =

L " ) ® L. We have a commutative diagram

e} 15

|

(lim  X5) ® L — (lim  X1) @ L
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in which the top horizontal map is the transpose f* of f, the vertical maps
are the isomorphisms explained above and the horizontal map on the bottom
is induced by D(f) = 0, and thus it is the zero map. We conclude that f* =0
and thus f = 0, which finishes the proof of theorem 1.8. O

The remaining sections will be devoted to the proof of theorem 3.5 in the
case D trianguline (see proposition 3.24), and to the proof of the statements
(namely proposition 3.31 and corollaries 3.26 and 3.35) that were used in the
proof of proposition 3.7 which, as we remarked, is equivalent to theorem 3.5
in the case DT = 0.

3.3. Trianguline representations

3.3.1. Preliminaries. If 6 : Q; — L* is a continuous character (not
necessarily unitary), let Z(0) be the (p,I')-module obtained by twisting the
action of ¢ and T" on & by ¢. It has a canonical basis e = 1 ® § for which
p(e) = d(p)e and o4(e) = d(a)e for a € Z), where o, € I satisfies 0, (¢) = ¢*
for all ¢ € p, , so that e(0,) = a. Let Z* be the ring of analytic functions
on the open unit disk, so that 2T = % N L[[T]]. We define Z7*(§) as the
Z*-submodule of Z(§) generated by e. We let () be the derivative of §
at 1 or, equivalently (if 0 is unitary), the generalized Hodge—Tate weight of
the Galois character corresponding to § by class field theory.

By!'® [21, prop. 0.2], Ext}(%(d2),%(01)) has dimension 1 when &, "
is not of the form 2~% or ez’ for some i > 0, and dimension 2 in the re-
maining cases. Moreover, if Ext!(%(0,), (1)) is 2-dimensional, then the
associated projective space is naturally isomorphic to P!(L). Let .# be the
set of triples (01,d2,-2), where 61,9 : Q) — L* are continuous charac-
ters and .Z € Proj(Ext!(%2(d2),%(61))) with the convention ¥ = oo, if
Ext!(%(52), %(51)) is 1-dimensional. Each s € .7 gives rise to an extension

0— Z(61) = A(s) = Z(62) — 0,

classified up to isomorphism by .Z.
Let .7, be the subset of . consisting of those s = (d1,d2,.Z) for which
vp(61(p)) + vp(d2(p)) = 0 and vy(d1(p)) > 0. For each s € .7 let

u(s) = vp(d1(p)), r(s) = w(d1) — K(d2).

Let 7 (resp. 75t) be the set of s € .7, for which k(s) € N*, u(s) < k(s)
and ¢ = oo (resp. £ # o). Let #'® be the set of s € %, for which
k(s) ¢ N* and finally let

8Contrary to [17], all results of [21] are proved for all primes p.
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_ cris st ng
Sy = SIS st pme

We say that D € ®I'°*(&) is trianguline (of rank 2) if Dy is an extension of
two (¢, ')-modules of rank 1 over #Z. These are described by the following
result ([21, prop. 0.3] or [17, th. 0.5]).

Proposition 3.15. a) For an s € %, there is a unique D(s) € ®T(&)
such that A(s) = D(s)ig, and D(s) is absolutel irreducible. Moreover, if
D € ®I°Y(&) is trianguline and absolutel irreducible, there exists s € Sy
such that D = D(s).

b) If s = (01,02,%) and s = (81,85, L") are elements of Fiy, then
D(s) 2 D(s') if and onl if 5,5' € .7 and &) = x5)5y, 8y = x75)§; .

3.3.2. Infinitesimal study of the module Dyjg X Pl. In this § we let
D be any object of .#.% (1) for some unitary character 4.

Recall (see section 2.5 of [30] for a summary) that Sen’s theory associates
to D a finite free L ®q, Qp(1p )-module Dge, endowed with a Sen operator
Ogen, Whose eigenvalues are the generalized Hodge-Tate weights of D.

Proposition 3.16. If D € .#.7(57') is absolutel irreducible, 2-dimen-
sional and if Ogen is not a scalar operator on Dsen, then 66]51 18 locall
constant.

Proof. By [23, chap. VI], the G-equivariant sheaf U +— D ;s U induces a
G-equivariant sheaf U +— D,z Ms U on Pl(Qp). We let Dyig M5 P! be the
space of global sections of this sheaf. This is naturally an LF space and
G acts continuously on it. Moreover, this action extends to a structure of
topological 2(GL2(Z,))-module on D,z K5 P, where 2(GLa(Zp)) is the
Fréchet-Stein algebra [58] of L-valued distributions on GLa(Z,). In particu-
lar, the enveloping algebra of gly, = Lie(G) acts on Dy Ks P1L.
Consider the Casimir element

1
C=vu"u +uut+ §h2 e U(gly),
where h = (§ %), vt = (J3) and u™ = (93). The action of C on D,z XsP*
preserves Dz = Dyjg M5 Zy, viewed as a sub-module of Dy X P! via the

extension by 0. By theorem 3.1 and remark 3.2 of [29] the operator C' acts
by a scalar ¢ on Dz and we have an equality of operators on Dgey

(12) (205en — (1 + K(6)))? =1+ 2c.
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Let a and b be the generalized Hodge-Tate weights of D. By Cayley-
Hamilton we have (Ogen — a)(Osen — b) = 0 as endomorphisms of Dgep.
Combining this relation with (12) yields

4a4+b—1—r(0))Osen + (1 + K(6))? — 4ab =1+ 2¢.

Since Ogey is not scalar, the previous relation forces a + b — 1 = k(9) and,
as a+b— 1= x(dp), this gives x(05") = 0. The result follows. O

Remark 3.17. If D is trianguline, 2-dimensional and irreducible, then Ogep
is not scalar, see proposition 4.6 of [17].

3.3.3. Dévissage of Dyg X PL. If ny, 1m0 Q; — L* are continuous
characters, let
B* (1) = (Indfmz ® e~y )™

be the locally analytic parabolic induction of the character 7o ® e~ 'n;. The
recipe giving rise to the sheaf U — D X3 U for D € ®I'**(&£) can be used
[28, § 3.1] to create a G-equivariant sheaf U + %Z(n1) K5 U on P!, attached
to the pair (Z(n1),6). We will only be interested in the space Z(n;) X5 P*
of its global sections, which is described by the following proposition, whose
proof is easily deduced from remark 3.7 of [28]. Let

%ﬂnﬂ&;Pl ={ze€ %(771)&5131, Resz, z € Zt(m), Resz, w-z € %+(771)}.

Proposition 3.18. Ife~lnn2 = 6 for some continuous characters ny,12, 9,
then there is an exact sequence of topological G-modules

0 — B™(n2,m)* ® 6 = Z(m) K5 P* — B™(n1,1m2) = 0

and a G-equivariant isomorphism B (na,m)* ® 6 = %+ (1) K5 P! of topo-
logical vector spaces.

From now on we suppose that D = D(s) € .4 % (57 ') for some point
s = (01,02,%) € S and some unitary character § : Q) — 07, and we let
n = 805", By proposition 3.3 we have D € .# .7 () and we let II = TIss: (D).
Since dim D = 2, there is a natural isomorphism D = D ® (551. Combining
these observations with part (i) of proposition 3.3 and with corollary VI.12
of [23], we obtain the following result.

Lemma 3.19. We have D € M F (6, and there is a natural isomorphism
1= 15,51 (D) ® 551 as well as an exact sequence of topological G-modules

0 — (IT"™)* — Dyig K5 P* — TI*" — 0.
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Lemma 3.20. There is an exact sequence of topological G-modules
0 — Z(01) K5 P! — Dyig Ks P — 2(52) K5 Pt — 0.

Proof. Since k() = k(dp) by remark 3.17, the desired result is proved in the
same way as corollary 3.6 of [28]. For the reader’s convenience, we sketch the
argument. Let a,b be the Hodge-Tate weights of D. Extension by 0 allows
to view Dyjg = Dyig M5 Z), as a subspace of Dyjz M5 P! and any element of
Dyig M5 P! can be written as 21 + w - 2o with 21,29 € Dyig. The equality
k(0) = k(6p) combined with theorem 3.1 in [29] yields

) (V- a)(tV =922 here t = log(1+ T).

ut(z1) =tz, ut(w-z)=—w-
We deduce that X := (Dyg K5 P1)% =0 is isomorphic as an L-vector space
to the space of solutions of the equation (V — a)(V —b)z = 0 on Dijg.
Proposition 2.1 of [28] shows that X is finite dimensional and lemma 2.6 of
loc.cit implies that all elements of X are invariant under the action of the
upper unipotent subgroup U of G. In particular, if e; is a basis of Z(d1)
which is an eigenvector of ¢ and I', then (0,e;) € X is U-invariant. Then
the arguments in § 3.2 of [28] go through by replacing ép by 0. The result
follows. O

Lemma 3.21. There is a morphism B*(61,n02) — II*™ with a nite di-
mensional kernel.

Pj’oof. We have inclusions 27 (61) X5 P! C D,ig X P! (lemma 3.20) and
(II*™)* C Dyig &;VP1 (lemma 3.19). It follows from [23, cor. VI.14] that
Z+(61) Ks P C (II1*")*, hence there is a morphism

(#(51) s P1) /(0 (51) 5 PY) = (Dyig 85 PY)/(T1)".

The left hand-side is isomorphic to B*"(d1,nd2) by proposition 3.18 and
the right hand-side is isomorphic to II1*" by lemma 3.19. Consequently, we
obtain a morphism B*"(d1,nd2) — II*", whose kernel is a closed subspace of
B&"(61,n02), thus a space of compact type. On the other hand, the kernel is
isomorphic to the quotient of (IT*")* N (2%(61) Ks P') by the closed subspace
ZT(61) K5 PL. Let 0 : Dyig — %(02) be the natural projection. Then

(f[an)* N (%(51) X5 Pl) _ {Z c (f[an)*’O'(ReSZp (Z)) = U(Reszp (UJZ)) = O}

is closed in the Fréchet space (IT*")*, thus it is itself a Fréchet space. Since
a Fréchet space which is also a space of compact type is finite dimensional,
the result follows. O]
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Remark 3.22. Combining lemmas 3.19 and 3.21, we also obtain the exis-
tence of a morphism B (81,1 1d2) — s, ,s1 (D)™ with a finite dimensional
kernel.

3.3.4. Universal unitary completions and completion of the proof.
The next theorem requires some preliminaries. A point s = (d1,02,.Z) € S
is called

e cxceptional if k(s) € N* and &, = 275§, (in particular, s € /).

o special if k(s) € N* and &; = 2"(9) "1, (this includes s € ).

If 5 is special, then setting W (81, 02) = Sym™*)~1(L2) @1 &, there is, by
[21, th. 2.7, rem. 2.11], a natural isomorphism

Extg (W (61, 82), B (01, 2) /W (81, 62)) = Ext!(2(62), Z(61)).

The extension D(s)yig of Z(02) by (01) associated to s gives therefore rise
to an extension E¢ of W (d1,d2) by B*(61,92)/W (61,92) (these extensions
were introduced and studied by Breuil [9, 11]).

If s = (01,02, Z) € i we have D(s) € ///L?(CSB%S)) by proposition 3.4.
We write II(s) instead of Ils,, (D(s)). Propositions 3.15 and 3.3(iv) imply
that II(s) is in Repy(0p(s)) and is absolutely irreducible.

If 7 is a representation of G on a locally convex L-vector space, we let

7 be the universal unitary completion of 7 (if it exists).

Theorem 3.23. If s = (61,092,-%) € S then the following hold:

—

a) If s € 7% s not special, then'® T1(s) = Bal&(§y,d5) = B (81, d2).
b) If s € 78, then 1(s) = Ba(8y,0a).
c) If s is special (which includes the case s € S5), then II(s) = E .

Proof. Assume first that s is not exceptional. Let B(s) be the space of
functions ¢ : Q, — L of class €*“*), such that = + (610, 'e™1)(z)p(1/x)
extends to a function of c/las\s‘ﬁ“(s). By results of Berger, Breuil and Emer-
ton?’ one can express B8(§y, ds), Ba@@) and E ¢ (according to whether
s € LT 78 or s special) as a quotient [T,y (s) of B(s). Theorem IV.4.12
of [20] (which builds on [5], [18], [17]) shows that D(s) € ///ﬁ(éz)%s)) and
that Iy (s) = II(s), which finishes the proof in this case.

It remains to deal with the exceptional case?!. Let II = II(s). The de-
scription of II(s)?" given by [21, prop. 4.11] shows that there is an injection

19Bals(§,82) is the space of SLa(Q,) locally algebraic vectors in B*(dy, ).
208ee [5, th. 4.3.1], [32, prop. 2.5], [9, cor. 3.2.3, 3.3.4].
21 This problem is solved in [48] for p > 2.
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o —

B8(5y,55) — I1. If X = B2l8(4y,d5), we obtain a morphism X — II and
an injection B¥8(§,d5) — X. In particular X # 0, and then the second
paragraph of the proof of prop. 2.10 in [52] shows that we can find a non-
exceptional point s’ € .7 and lattices ©1, Oy in B¥8(§y,d5) and II(s')28,
both finitely generated as ¢[G]-modules and such that ©,/w = O2/w.
Since ©1, 04 are finitely generated over O[G], their ﬂic completions

are open, bounded, G-stable lattices in X and TI(s") = TI(s)?18, respectively.
As s’ is not exceptional, we know (by the first paragraph) that ©y/w is
admissible, of finite length, thus X is admissible, of finite length as Banach
representation and X = & mgs. In particular, the image of the morphism
X — II is closed [57]. Since II is irreducible we obtain an exact sequence
0=+ K — X — I — 0 in Ban¥™(L). Tt follows from [51, lem. 5.5] that
this induces an exact sequence 0 — K= — X = — I — 0. Thus we
have a surjection II(s')” — II(s) . Compatibility of p-adic and mod p local
Langlands ([4] or proposition 3.10) implies that this surjection must be an
isomorphism, which in turn shows that K = 0, hence K = 0. We conclude
that X = II and we are done. O

Proposition 3.24. If D € .y, and D € .# F (6~ 1) for some unitar char-
acter d, then 6 = dp.

Proof. Write s = (61,02,.%) € %r and 6 = dpn (note that §p = e~ 1510).
We will prove that n = 1.

We start by proving that n = 1~!. Suppose that this is not the case and
let s’ = (61,102,.%) and s” = (61,7716, .%). Since 7 is locally constant and
unitary, we have s’,s” € .4, and s, s', s” are pairwise distinct. At least one
of s/, 5" is not special, and replacing®? n by 7! we may assume that s’ has
this property. Lemma 3.21 gives a nonzero morphism B*"(d;,nd2) — II. Ap-
plying theorem 3.23 (to this morphism or to its restriction to B8(5;,nd2))
yields a nonzero morphism II(s") — II. This must be an isomorphism since
both the source and target are topologically irreducible and admissible by
proposition 3.3. Applying the functor II — V(II) and using proposition 3.3
again yields D(s) = D(s'), contradicting proposition 3.15. Thus n = 11,
and the proof also shows that if s’ is not special, then n = 1.

Assume that s’ is special. Since n* = 1, we have Il5,,s:(D) = II and the
exact sequence in proposition 3.19 becomes

0 — (II*)* ® 6p — Dyig K5 P — TI* — 0.

22This uses lemma 3.19.
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Proposition 3.18 also gives exact sequences

0 — B™(53,n01)* @ 6p — Z(61) K5 PL — B*(5;,nd5) — 0,
0 — B™(51,n02)* @ 6p — Z(62) K5 PL — B*(8,,101) — 0.

We are now exactly in the context of the proof of prop. 4.11, part ii)
of [21], which shows that II*" contains an extension E¢ of W(d1,nd2)
by B*(d1,1d2)/W (61,m02). This extension is necessarily non split since
I1*" does not contain any finite dimensional G-invariant subspace. Letting
s = (61,m02,¢"), the inclusion Ey — II*" induces via theorem 3.23 a
nonzero morphism II(s”) — II. Arguing as in the previous paragraph, we
obtain D(s”) = D(s) and we conclude using proposition 3.15. O

3.4. Representations of infinite height

3.4.1. (p,I')-modules of infinite height. In this § we fix a character
6+ QF — 0 and an absolutely irreducible D € .#.F (6=1) such that
Dt = {0}. Let I = II5(D) and II = IIz: (D). By proposition 3.3 we have
an inclusion IT* ¢ DX P, We will use several times the inclusion D¥=% C
Resyz, (IT*) for all aw € 6, see the discussion in remark V.14 of [23]. Recall
that €% = (1 — ap) DY~

Proposition 3.25. a) Resqiprz, : II* — D is injective for all a € Ly and
n > 0.
b) €*NE€? = {0} for all distinct o, B € 0.
pP°"0 1-a

Proof. a) Resqipnz,(2) = 0 is equivalent to Resz, ( 7" ] (7
it suffices to prove that Resz, : I1* — D is injective. Let Do be a stable
lattice in D and let 11y = II5(Dy) and IIy = IIss:(Dp). Then Iy and 1 are
open, bounded and G-invariant lattices in II and II. Suppose that z € IT*
satisfies Resz, (2) = 0. Multiplying z by a power of p, we may assume that

zelll. fw= 0} ,then 'Y wze DyNIL for all n > 1, thus

z) =0, so

@"(wz) =Resz, ( 70 wz) € Resy, (115).
Since Resy, (II3) is compact (because IIj is compact and Resz,, is continuous),
we deduce that wz € D = {0} and so z = 0.

b) Let € D¥=% and y € D¥=" be such that (1—ayp)z = (1—Bp)y. Then
z—y = p(ax—Py), 0 Resi4pz, (v —y) = 0. Since DY=%, D¥=F C Resy, (II*),
we can write z — y = Resg, (z) for some z € IT*. Then Res;,z, () = 0, and
part a) shows that z = 0, thus x = y. But then ax = Sy and so x = y = 0.
The result follows. 0
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Corollary 3.26. Let n: Q) — 0™ be a locall constant character and let
a,B € 0% If my(€*)NEP # {0}, then Nz =1 and o = B.

Proof. Suppose that z € € and y € €7 are nonzero and satisfy my(2) =y.
Choose %, € II* such that » = Reszx () and y = Resy (9) (this uses
the fact that D¥=% D¥=F C Resy, (II*)). The hypothesis and part e) of
proposition 3.1 yield the existence of n > 1 such that

my = (i) Resi1pnz, .
i€(2/prL)”

For i € (Z/p"Z)*, applying Res; pnz, to the equality m,(z) = y (and
using part d) of proposition 3.1) gives

n(i) Resiypnz, (2) = Resiyprz, (1),

hence (proposition 3.25) n(i)Z = g. Since this holds for all i € (Z/p"Z)* and
since Z # 0, we infer that 77|Z; = 1. But then m,, is the identity map and so
the hypothesis becomes > N €*? # {0}. Proposition 3.25 shows that a =
and finishes the proof. O

3.4.2. A family of unramified twists of D. In this § we let V be any
absolutely irreducible L-representation of ¢, of dimension > 2 and we let
Vo be a 9, -stable O-lattice in V. Let S = O[[X]] and let 0™ : 9o, — S~
be the unramified character sending a geometric Frobenius to 1 + X. Then
Vo,un = S ®¢ Vo becomes a ¥g -module for the diagonal action.

Let Dy (resp. Do un) be the étale (¢, I')-module associated to Vy (resp.
Vo,un) by Fontaine’s [41] equivalence of categories and its version [25] for
families. Concretely, Doun = Og 5 @4, Do, where?3

Ops=8®c0e={ a,T"a, €S, lim a, =0},

v €T and ¢ acting by 7 ® v and p(A ® z) = ((1 4+ X)p(N)) @ ¢(2).
For a € 1+ myp, there is a surjective specialization map sp, : S — O,
sending X to a — 1, with kernel p, = (X — a + 1). The induced map

SPo 1 Os.s = Og, so(  aT") = ap(la—1)T"
nez neL

ZThe limit is taken for the mg = (w, X)-adic topology.
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gives rise to a specialization map sp, : Doun — Do, which in turn in-
duces an isomorphism of (¢, I')-modules Dy yn/9a = Do®a’?. In particular,
SPe : Doun — Do induces a I'-equivariant morphism sp,, : Dfi j& — Dg’ -,
Let Dyn = L ®¢ Doun and D = L ®¢ Dy.

Proposition 3.27. For all « € 1+ myp the map sp, : DUl — Dv=a s
surjective.

Proof. Let Dy, = Dgun/pgn. It suffices to prove that the cokernel of the
natural map Dg” j& — D%Zl is O-torsion. The snake lemma applied to the
sequence 0 — D1 — D, — D; — 0 mapped to itself by 1) — 1 yields an
exact sequence of &-modules
_ _ - D, _ D D
0—DV= »py=t 5 pv=t 5, =L, —n L.

v—1 Y—-1 ¢—-1

All modules appearing in the exact sequence are compact [19, prop. 11.5.5,

I1.5.6] and we have a natural isomorphism lim Dyt = Dg’;} (as Doun =

@n D,,). Passing to the limit we obtain therefore an exact sequence

_ _ - D
0—>D3;§—>D3;§—>D%_1—>M—>M—> ” 11 — 0,
where M = @n f_"l. It is thus enough to prove that M is a torsion -

module. § §

Let W,, be the Galois representation associated to D,,, namely the Cartier
dual of W, := Vj un/ph. It follows from [19, remarque 11.5.10] that there is
an isomorphism?*

D,
P —1
hence it suffices to check that (Qp/Z, ®z, W,) are O-torsion modules of

bounded exponent (as n varies).
Let ¢ = Gal(@p/@gb). Since Vj is absolutely irreducible of dimension

> 2, there is N > 1 such that p" kills (Qp/Zyp @7, Vo)jf As Vo,un = S®e Vo,
with . acting trivially on S, and since S/p? is a finite free &-module, we
have
(Q/Zp @z, W) C (Qp/Zy ©2, Wa)™ = (S/6 @5 (L)€ ©6 Vo))"
=5/ @0 (L]0 ®5 Vo)

= [(Qp/Zp ®z, Dn)g):l]v = [(Qp/Zp ®z, Wn)H]Va

and the last module is killed by pV. The result follows. O

ZHere H = Ker(c) = Gal(Q,/Q, (1, )) and XV is the Pontryagin dual of X.
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3.4.3. Analytic variation in the universal family. We recall that
there is [19, prop. 1.2.3] a ¢ and I'-invariant perfect pairing { , } : DxD — L,
under which ¢ and v are adjoints. Recall also that, for & € 0, we denote
€ = (1 — ap)D¥=?. The following result follows from the proof of [19,
lemme VI.1.1].

Lemma 3.28. € is the orthogonal (for { , }) of D¥=Y* inside D¥=0.

Let g=pif p > 2 and ¢ = 4 if p = 2. Fix a topological generator v of
1+ qZy and define a map ¢ : Z; — Z, by

075 = p(Qp) x (14 qZp) — 1+ qZy = v" =2 7Ly,

the second map being the natural projection and the last map sending +*
to x.

Lemma 3.29. For alln € F°(L) there is an equalit of operators on DRZy

my = (n(y) = 1)"m(e
n>0

and m(z)(DO X Z;) Cc DyX Z;;
Proof. For alln € Z9(L) and z € Z, we have

(i) = 1" T 2 = (@) = g (a),

n
n>0

the last equality being a consequence of the fact that z~1 - 4@ ¢ 1(Qp).
Hence

l
Mz, = N-1"
n>0
the series being uniformly convergent on Z, . This yields the first part. The
second part is a consequence of the fact that f; (Zy) C Zy. O

We are now ready to prove a key technical ingredient in the proof of
theorem 3.5. We identify Z°(L) and (1 + mg) x (1 + mg) via the map

= (n(7),n(p))-
Definition 3.30. A subset S of (14+myg) x (14+myg) is called Zariski closed

if it is defined by a system of equations of the form f(x —1,y—1) = 0, with
feolX,Y]].
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Proposition 3.31. The set
H={ne %) my(€*)=¢"" Yaecl+mg}

s a Zariski closed subgroup of ﬂAO(L).
Proof. Since F°(L) — Autz(D¥=0), n — my is a morphism of groups, H is
a subgroup of .7 O(L). To conclude, it suffices to check that

Ho={ne jO(LNmn(Cga) - cgom(p)}

is Zariski closed for all o« € 1 +my,.
Let us fix a € 1 + my, and denote
G =(1-9)Dyy and G =(1-¢)Dj5,.
where Dy, and Do un Were defined in n® 3.4.2. If np € T9L 0( ), it follows from
proposition 3.27 that specializing induces surjections %, ®¢ L — €% and

G ®Re L — @1/an(p)  Since €1P) is the orthogonal of @1/an(p) in p¥=0
(lemma 3.28), it follows that

H, = {77 S iO(L” {Spl/an(p)(é)vmﬂ(spa(z))} =0 Vze %unaz € (gun}‘

Fix 2 € €y and z € €. We can write 3 = k>0 X*z. with 2, € Dy.
By definition

SP1/an(p) (2) = (

Combining this relation and lemma 3.29, we obtain

1
{5P1/an(p) (2), My (sPa(2))} = k7n>0(m =) (n(y) = )" {2k, m( 1) (spa(2))}

and the last expression is the evaluation at (1(y) —1,7n(p) — 1) of an element
of O[[X,Y]]. Thus H, is a Zariski closed subset of (1 +mz)?2, which finishes
the proof of proposition 3.31. O

3.4.4. The Zariski closure of (a",b"), 1. We refer the reader to def-
inition 3.30 for the notion of Zariski closed subset of (1 4+ mg) x (14 mpg).
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Proposition 3.32. Leta,b € 1+my. The Zariski closure of {(a™,b")|n > 1}
18:

o A nite subgroup of u, X pp if loga =logb = 0.

o The set {(z,z%)|lz € 1+ mp} (respectivel {(z° z)lx € 1+ mp}) if
logb = sloga (respectivel loga = slogb), s € Zy and (log a,logb) # (0,0).

e (1+mg) x (1+myg) ifloga andlogb are linearl independent over Q,.

Proof. The first two cases are immediate, so assume that loga and logb
are linearly independent over Q,. Suppose that f € O[[X,Y]] is such that
fla™—=1,b"—1) =0 for all n > 1. We will prove that f = 0. We may assume
that b = a®, with s € 0 —7Z,. For n > 1 we have

s (n)) > n
v —vp(nl) > ———,
p n = p p— 1
hence 2° = o , (#—1)" is well-defined for v,(z —1) > Zﬁ and z — z°

is analytic in this ball, with values in 1+ my. Thus z — f(z, (14+2)° —1) is
analytic on the ball v, (z) > ﬁ and 0 at ™ —1 for all n > 1. Since loga # 0,
it follows that f(z,(1 + x)° —1) = 0 for all vy(z) > zﬁ’ consequently
f(T,(1+T)*—1) =0 in L[[T]]. Proposition 3.33 below combined with the
formal Weierstrass preparation theorem yield f = 0, which is the desired
result. O

Proposition 3.33. If s € 0 — 7Z,, then (1 +T)° is transcendental over
Frac(&).

Proof. Set f = (1 +T)% and K = Frac(&1). We will need the following
elementary result [31, prop. 7.3].

Lemma 3.34. (1+7T)% € Z" if and onl if s € Zy.

We start with the case f € K. Since a nonzero element of &' generates
the same ideal in &% as a nonzero polynomial, we have K C %, and so
feZnNL|T]] = #Z" and the previous lemma leads to a contradiction if
s€ 0 —Zp.

Next, assume that f is algebraic over K and f ¢ K. Let P = X" +
ap-1 X"t 4. +ay € K[X] be its minimal polynomial over K, with n > 1.
Consider the differential operator 9 = (1 + T)diT and observe that 0f = sf.
The equality O(P(f)) — nsP(f) =0 can also be written as

n—1
(day, + s(k — n)ay) f* = 0.
k=0
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By minimality of n we deduce that day + s(k — n)ay = 0 for all £ < n, in
particular d(ag - (1 4+ T)7*") = 0, hence a9 = c¢- (1 + T)*" for some ¢ € L*.
Thus (1+7")*" € K and by the previous paragraph this gives sn € Z,, which
combined with s € & yields s € Z,,, a contradiction. The result follows. [

The following result follows immediately from proposition 3.32.

Corollary 3.35. If u, C L, then an nontrivial Zariski closed subgroup of
TO(L) contains a nontrivial character of nite order.

Remark 3.36. The conclusion of proposition 3.32 fails if we work with
unbounded analytic functions instead of elements of L ®» O[[X,Y]] when
defining the Zariski closure: if a,b € 1+ my satisfy (loga,logb) # (0,0),
then log b - log(1+ X) —loga - log(1+Y') vanishes at (™ —1,b" — 1) for all
n > 1.
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