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The p-adic local Langlands correspondence for GL2(Qp) is given by
an exact functor from unitary Banach representations of GL2(Qp)
to representations of the absolute Galois group GQp of Qp. We
prove, using characteristic 0 methods, that this correspondence in-
duces a bijection between absolutely irreducible non-ordinary rep-
resentations of GL2(Qp) and absolutely irreducible 2-dimensional
representations of GQp . This had already been proved, by charac-
teristic p methods, but only for p ≥ 5.
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1. Introduction

1.1. The p-adic local Langlands correspondence

Let p be a prime number and let G = GL2(Qp). Let L be a finite extension
of Qp, with ring of integers O, residue field k and uniformizer �.
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Let BanadmG (L) be the category of admissible unitary L-Banach repre-
sentations of G. Any Π ∈ BanadmG (L) has an open, bounded and G-invariant
lattice Θ and Θ⊗O k is an admissible smooth k-representation of G. We say
that Π in BanadmG (L) is residual ly of finite length if for any (equivalently,
one) such lattice Θ, the G-representation Θ⊗O k is of finite length. In this
case the semi-simplification of Θ⊗O k is independent of the choice of Θ, and
we denote it by Π

ss
. We say that an absolutely irreducible1 Π ∈ BanadmG (L)

is ordinary if it is a subquotient of a unitary parabolic induction of a unitary
character.

Let RepL(G) be the full subcategory of BanadmG (L) consisting of rep-
resentations Π having a central character and which are residually of fi-
nite length. Let RepL(GQp

) be the category of finite dimensional continuous
L-representations of GQp

= Gal(Qp/Qp). In [20, ch. IV] an exact, covari-
ant functor (that some people call the Montreal functor) Π �→ V(Π) from
RepL(G) to RepL(GQp

) is constructed. We prove that this functor has all
the properties needed to be called the p-adic local Langlands correspondence
for G.

Theorem 1.1. The functor Π �→ V(Π) induces a bijection between the
isomorphism classes of:

• absolutely irreducible non-ordinary Π ∈ BanadmG (L),

• 2-dimensional absolutely irreducible continuous L-representations
of GQp

.

Implicit in the statement of the theorem is the fact that absolutely irre-
ducible Π ∈ BanadmG (L) are residually of finite length so that one can apply
the functor V to them.

One corollary of the theorem, and of the explicit construction of the
representation Π(V ) of G corresponding to a representation V of GQp

(see
below), is the compatibility between the p-adic local Langlands correspon-
dence and local class field theory: we let ε : GQp

→ Z×
p be the cyclotomic

character and we view unitary characters of Q×
p as characters of GQp

via
class field theory2 (for example, ε corresponds to x �→ x|x|). Note that, by
Schur’s lemma [27], any absolutely irreducible object of BanadmG (L) admits
a central character.

Corollary 1.2. If Π is an absolutely irreducible non-ordinary object of
BanadmG (L) with central character δ, then V(Π) has determinant δε.

1This means that Π⊗L L′ is topologically irreducible for all finite extensions L′

of L.
2Normalized so that uniformizers correspond to geometric Frobenii.
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The next result shows that the p-adic local Langlands correspondence is
a refinement of the classical one (that such a statement could be true was
Breuil’s starting point for his investigations on the existence of a p-adic local
Langlands correspondence [10]).

Let π be an absolutely irreducible, infinite dimensional, smooth L-rep-
resentation of G, and let W be an algebraic representation of G (so there
exist a ∈ Z and k ≥ 1 such that W = Symk−1L2 ⊗ deta). Let Δ be the
Weil representation corresponding to π via the classical local Langlands
correspondence; we view Δ as a (ϕ,GQp

)-module3 [40, 13]. Let F (Δ,W ) be
the space of isomorphism classes of weakly admissible, absolutely irreducible,
filtered (ϕ,N,GQp

)-modules [39, Chap. 4] whose underlying (ϕ,GQp
)-module

is isomorphic to Δ and the jumps of the filtration are −a and −a − k: if
L ∈ F (Δ,W ), the corresponding [22] representation VL of GQp

is absolutely
irreducible and its Hodge-Tate weights are a and a + k. If F (Δ,W ) is not
empty, then it is either a point if π is principal series or P1(L) if π is
supercuspidal or a twist of the Steinberg representation4.

Theorem 1.3. (i) If Π is an admissible, absolutely irreducible, non-ordi-
nary, unitary completion of π ⊗ W , then V(Π) is potential ly semi-stable
with Hodge-Tate weights a and a+ k and the underlying (ϕ,GQp

)-module of
Dpst(V(Π)) is isomorphic to Δ.

(ii) The functor Π �→ Dpst(V(Π)) induces a bijection between the ad-
missible, absolutely irreducible, non-ordinary, unitary completions of π⊗W
and F (Δ,W ).

The theorem follows from the combination of theorem 1.1, [20, th. 0.20]
(or [30]), [20, th. VI.6.42] and Emerton’s local-global compatibility5 ([34],
th. 3.2.22).

If p ≥ 5, the results are not new; they were proven in [54], building
upon [20, 43], via characteristic p methods, but these methods seemed to be

3In general, this can require to extend scalars to a finite unramified extension of
L, but we assume that this is already possible over L.

4 In this last case, the filtration corresponding to ∞ ∈ P1(L) makes the mon-
odromy operator N on Δ vanish and V∞ is crystalline (up to twist by a character)
whereas, if L �= ∞, VL is semi-stable non-crystalline (up to twist by a character).

5 It is a little bit frustrating to have to use global considerations to prove it. By
purely local considerations, one could prove it when π is a principal series or a twist
of the Steinberg representation. When π is supercuspidal, one could show that there
is a set Sπ of (ϕ,GQp)-modules Δ such that the functor Π �→ Dpst(V(Π)) induces
a bijection between the admissible, absolutely irreducible, unitary completions of
π ⊗W and the union of the F (Δ,W ), for Δ ∈ Sπ, but we would not know much
about Sπ except for the fact that Sπ ∩ Sπ� = ∅ if π �∼= π′.
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very difficult to extend to the case p = 2 (and also p = 3 in a special case).
We are able to prove the theorem in full generality by shifting to character-
istic 0 methods and using an array of results which were not available at the
time [54] was written:

• The computation [52] of the blocks of the mod p representations of G,
in the case p = 2; this computation also uses characteristic 0 methods.

• Schur’s lemma [27] for admissible Banach representations of p-adic Lie
groups, the proof of which uses results of Ardakov and Wadsley [1].

• The computation [21, 44] of the locally analytic vectors of unitary
principal series representations of G.

• The computation [30] of the infinitesimal action ofG on locally analytic
vectors of objects of RepL(G).

There are 3 issues to tackle if one wants to establish theorem 1.1: one
has to prove that absolutely irreducible objects of BanadmG (L) are residually
of finite length and bound this length, and one has to prove surjectivity and
injectivity.

1.2. Residual finiteness

Before stating the result, let us introduce some notations. Let B be the
(upper) Borel subgroup of G and let ω : Q×

p → k× be the character
x �→ x|x| (mod p). If χ1, χ2 : Q×

p → k× are (not necessarily distinct) smooth
characters, we let

π{χ1, χ2} = (IndGBχ1 ⊗ χ2ω
−1)sssm ⊕ (IndGBχ2 ⊗ χ1ω

−1)sssm.

Then π{χ1, χ2} is typically of length 2, but it may be of length 3, and even
of length 4, when p = 2 or p = 3, see lemma 2.14. Recall that a smooth
irreducible k-representation is called supersingular if it is not isomorphic to
a subquotient of some representation π{χ1, χ2}.
Theorem 1.4. Let Π be an absolutely irreducible object of BanadmG (L). Then
Π is residual ly of finite length and, after possibly replacing L by a quadratic
unramified extension, Π

ss
is either absolutely irreducible supersingular or a

subrepresentation of some π{χ1, χ2}.

For p ≥ 5, this theorem is proved in [54]. The starting points of the
proofs in [54] and in this paper are the same: one starts from an absolutely
irreducible mod p representation π ofG and considers the projective envelope
P of its dual (in a suitable category, cf. § 2.1). Then we are led to try to
understand the ring E of endomorphisms of P , as this gives a description of
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the Banach representations ofG which have π as a Jordan-Hölder component
of their reduction mod p. After this the strategies of proof differ completely
and only some formal parts of [54] are used in this paper (mainly § 4 on
Banach representations).

To illustrate the differences, let us consider the simplest case where π is
supersingular, so that V(π) is an irreducible representation of GQp

. The key
point in both approaches to theorem 1.4 is to prove that the ring E[1/p] is
commutative. This is done as follows.

In [54], the functor Π �→ V(Π) is used to show that E surjects onto the
universal deformation ring of V(π), which is commutative. It is then shown
that this map is an isomorphism by showing that it induces an isomorphism
on the graded rings of E and the universal deformation ring of V(π) with
respect to the maximal ideals. To control the dimension of the graded pieces
of gr•E, one needs to be able to compute the dimension of Ext-groups of
mod p representations of G. These computations become hard to handle
for p = 3 and very hard for p = 2. Moreover, the argument uses that the
universal deformation ring of V(π) is formally smooth, which fails if p = 2
and in one case if p = 3.

In this paper we use the functor Π �→ m(Π), defined in [54, § 4], from
BanadmG (L) to the category of finitely generated E[1/p]-modules. We show
that if Π is the universal unitary completion of a locally algebraic unramified
principal series representation ofG, then the image of E[1/p] → EndL(m(Π))
is commutative and then show6 that the map

(1) E[1/p] →
�

i

EndL(m(Πi))

is injective, where the product is taken over all such representations. The
argument uses the work of Berger–Breuil [5], that the Πi are admissible
and absolutely irreducible, and we can control their reductions modulo p
[4, 23]. The injectivity of (1) is morally equivalent to the density of crystalline
representations in the universal deformation ring ofV(π), and is more or less
saying that “polynomials are dense in continuous functions”, an observation
that was used by Emerton [34] in a global context. However, in our local
situation, P is not finitely generated over O[[GL2(Zp)]], and things are more

6We actually end up proving a weaker statement, which is too technical for
this introduction, see the proofs of corollary 2.20 and theorem 2.21. To show the
injectivity of (1) one would additionally have to show that the rings E[1/p]/aV
in corollary 2.20 are reduced. We do not prove this here, but will return to this
question in [55].
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complicated than what the above sketch would suggest; we refer the reader
to § 2.1 for a more detailed overview of the proof of the theorem.

Remark 1.5. The approach developed in [54], when it works, gives more in-
formation than theorem 1.4: one gets a complete description of finite length
objects of BanadmG (L), not only of its absolutely irreducible objects and also
a complete description of the category of smooth locally admissible represen-
tations of G on O-torsion modules. However, the fact that E is commutative
is a very useful piece of information, and, when π is either supersingular or
generic principal series, in a forthcoming paper [55] we will extend the results
of [54] to the cases when p = 2 and p = 3.

Combining theorem 1.4 and the fact [27, cor. 3.14] that an irreducible
object of BanadmG (L) decomposes as the direct sum of finitely many abso-
lutely irreducible objects after a finite extension of L, we obtain the following
result:

Corollary 1.6. An object of BanadmG (L) has finite length if and only if it is
residual ly of finite length.

The following result answers question (Q3) of [20, p. 297] and is an
easy consequence of theorem 1.4, the exactness of the functor7 Π �→ V(Π)
and [20, th. 0.10].

Corollary 1.7. If Π ∈ BanadmG (L) is absolutely irreducible, dimLV(Π) ≤ 2.

1.3. Surjectivity

The surjectivity was proved in [20] (for p ≥ 3, and almost for p = 2, see
below) by constructing, for any 2-dimensional representation V of GQp

, a
representation Π(V ) of G such that V(Π(V )) = V (or the Cartier dual
V̌ of V , depending on the normalisation). The construction goes through
Fontaine’s equivalence of categories [41] between representations of GQp

and
(ϕ,Γ)-modules, as does the construction of the functor Π �→ V(Π). If D is
the (ϕ,Γ)-module attached to V by this equivalence of categories and if δ is
a character of Q×

p , one can construct a G-equivariant sheaf U �→ D �δ U on
P1 = P1(Qp). If δ = δD, where δD = ε−1 detV , then the global sections of
this sheaf fit into an exact sequence of G-representations

(2) 0 → Π(V )∗ ⊗ δ → D �δ P
1 → Π(V ) → 0.

The proof of the existence of this decomposition is by analytic continua-
tion, using explicit computations to deal with trianguline representations,

7More precisely, of integral and torsion versions of this functor.
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in which case Π(V ) is the universal unitary completion of a locally analytic
principal series [5, 9, 18, 32, 48], and the Zariski density [17, 43, 7, 15] of
trianguline (or even crystalline) representations in the deformation space
of V

ss
. That such a strategy could work was suggested by Kisin who used a

variant [43] to prove surjectivity for p ≥ 5 in a more indirect way. This Zariski
density was missing when p = 2 and V

ss
is scalar: the methods of [17, 43]

prove that the Zariski closure of the trianguline (or crystalline) representa-
tions is a union of irreducible components of the space of deformations of the
residual representation; so what was really missing was an identification of
the irreducible components, which is not completely straightforward. This is
not an issue anymore as we proved [24] that there are exactly 2 irreducible
components and that the crystalline representations are dense in each of
them.

1.4. Injectivity

The following result is a strengthening of the injectivity of the p-adic local
Langlands correspondence.

Theorem 1.8. Let Π1,Π2 ∈ BanadmG (L) be absolutely irreducible, non-
ordinary.

(i) If V(Π1) ∼= V(Π2), then Π1
∼= Π2.

(ii) We have Homcont
L[P ](Π1,Π2) = Homcont

L[G](Π1,Π2), where P is the mira-
bolic subgroup of G.

For absolutely irreducible non-ordinary objects of BanadmG (L), the knowl-
edge of V(Π) is equivalent to that of the action of P (this is not true for
ordinary objects). So, theorem 1.8 is equivalent to the fact that we can re-
cover an absolutely irreducible non-ordinary object Π from its restriction
to P . If we replace P with the Borel subgroup B, then the result follows
from [49] (see also [23, remark III.48] for a different proof). The key dif-
ficulty is therefore controlling the central character, and, thanks to results
from [20, 23], the proof reduces to showing that δD is the only character δ
such that D �δ P

1 admits a decomposition as in (2).
So assume D �δ P

1 admits such a decomposition and set η = δ−1
D δ. We

need to prove that η = 1 and this is done in two steps: we first prove that
η = 1 if it is locally constant, and then we prove that η is locally constant.

The proof of step one splits into two cases:
• IfD is trianguline then we use techniques of [21, 28] to study locally an-

alytic principal series appearing in the locally analytic vectors in Π1 and Π2,
and make use of their universal unitary completions.
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• If D is not trianguline then the restriction of global sections D�δP
1 to

any non-empty compact open subset of P1 is injective on Π(V )∗⊗ δ, viewed
as a subspace of D �δ P

1 via (2). If α ∈ O∗, let C α ⊂ D �Z×
p be the image

of the eigenspace of
�
p 0
0 1

�
for the eigenvalue α under the restriction to Z×

p .
This image is the same for δ and δD and can be described purely in terms of
D as (1− αϕ) ·Dψ=α. Using the action of

�
0 1
1 0

�
on D �δ P

1 and D �δD P1

we show that the “multiplication by η” operator mη : D � Z×
p → D � Z×

p

(see no 3.1.2 for a precise definition) sends C α into C αη(p), and using the
above-mentioned injectivity, that η = 1.

To prove that η is locally constant, one can, in most cases, use the
formulas [30] for the infinitesimal action of G. In the remaining cases one
uses the fact that the characters η sending C α into C αη(p) for all α form a
Zariski closed subgroup of the space of all characters, and such a subgroup
automatically contains a non-trivial locally constant character if it is not
reduced to {1}.

The reader will find a more detailed overview of the proof in § 3.2.

Finally, we give a criterion for Π ∈ BanadmG (L), absolutely irreducible,
to be non-ordinary; this refines theorem 1.4, by describing in which case
the inclusion Π

ss ⊂ π{χ1, χ2} given by this theorem is an equality. It is
a consequence of theorems 1.4 and 1.8, and of the compatibility [4, 23] of
p-adic and mod p Langlands correspondences.

Theorem 1.9. Let Π ∈ BanadmG (L) be absolutely irreducible. The fol lowing
assertions are equivalent

(i) V(Π) is 2-dimensional.
(ii) Π is non-ordinary.
(iii) After possibly replacing L by a quadratic unramified extension, Π

ss
is

either absolutely irreducible supersingular or isomorphic to some π{χ1, χ2}.

1.5. Acknowledgements

V.P. would like to thank Matthew Emerton for a number of stimulating
discussions. In particular, § 2.3 is closely related to a joint and ongoing work
with Emerton.

2. Residual finiteness

2.1. Overview of the proof

If G is any p-adic analytic group, let ModsmG (O) be the category of smooth
representations of G on O-torsion modules. Pontryagin duality induces an



10 Pierre Colmez et al.

anti-equivalence of categories between ModsmG (O) and a certain category
ModproG (O) of linearly compact O-modules with a continuous G-action,
see [35]. In particular, if G is compact then ModproG (O) is the category of
compact O �G� -modules, where O �G� is the completed group algebra. Let
Mod?G(O) be a full subcategory of ModsmG (O) closed under subquotients
and arbitrary direct sums in ModsmG (O) and such that representations in
Mod?G(O) are equal to the union of their subrepresentations of finite length.
Let C(O) be the full subcategory of ModproG (O) antiequivalent to Mod?G(O)
via the Pontryagin duality.

Let π ∈ Mod?G(O) be admissible and absolutely irreducible, let P � π∨

be a projective envelope of π∨ in C(O), and let E := EndC(O)(P ).

Let Π ∈ BanadmG (L) and let Θ be an open, bounded and G-invariant
lattice in Π. Let Θd = HomO(Θ,O) be the Schikhof dual of Θ. Endowed with
the topology of pointwise convergence, Θd is an object of ModproG (O), see
[54, lem. 4.4]. If Θd is in C(O) then Ξd is in C(O) for every open bounded G-
invariant lattice Ξ in Π, since Θ and Ξ are commensurable and C(O) is closed
under subquotients, see [54, lem. 4.6]. We let BanadmC(O) be the full subcategory

of BanadmG (L) consisting of those Π with Θd in C(O). For Π ∈ BanadmC(O) we
let

m(Π) := HomC(O)(P,Θ
d)⊗O L.

Then m(Π) is a right E[1/p]-module which does not depend on the choice
of Θ, since any two open, bounded lattices in Π are commensurable. The
functor Π �→ m(Π) from BanadmC(O) to the category of right E[1/p]-modules is

exact by [54, lem. 4.9]. The proposition below is proved in [54, § 4], as we
explain in § 2.2.

Proposition 2.1. For Π in BanadmC(O) the fol lowing assertions hold:

(i) m(Π) is a finitely generated E[1/p]-module;
(ii) dimLm(Π) is equal to the multiplicity with which π occurs as a sub-

quotient of Θ⊗O k;
(iii) if Π is topological ly irreducible, then

a) m(Π) is an irreducible E[1/p]-module;

b) the natural map EndcontG (Π) → EndE[1/p](m(Π))op is an isomor-
phism.

Let us suppose that we are given a family {Πi}i∈I in BanadmG (Li), where
for each i ∈ I, Li is a finite extension of L with residue field ki. Let us
further suppose that each Πi lies in BanadmC(O), when considered as an L-
Banach space representation. Suppose that d ≥ 1 is an integer such that we
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can find open, bounded and G-invariant lattices Θi in Πi such that π ⊗k ki
occurs with multiplicity ≤ d as a subquotient of Θi ⊗OLi

ki for all i ∈ I.
Thus π occurs with multiplicity ≤ [Li : L]d as a subquotient of Θi/(�)
and proposition 2.1 yields dimLi

m(Πi) ≤ d. For simplicity let us further
assume that d = 1, then we can conclude that the action of E[1/p] induces
a homomorphism E[1/p] → EndLi

(m(Πi)) ∼= Li. If ai is the kernel of this
map then E[1/p]/ai is commutative, and hence if we let a = ∩i∈Iai, then
we deduce that E[1/p]/a is commutative. Let us further assume that a = 0.
Then we can conclude that the ring E is commutative. Let Π in BanadmC(O)

be absolutely irreducible, and let E be the image of E[1/p] in EndL(m(Π)).
Since E[1/p] is commutative, so is E , and using proposition 2.1 (iii) b) we
deduce that E is a subring of EndcontG (Π).

Now comes a new ingredient, not available at the time of writing [54]: by
Schur’s lemma [27], since Π is absolutely irreducible we have EndcontG (Π) = L,
hence E = L. Since m(Π) is an irreducible E[1/p]-module by proposition 2.1
(iii) a), we conclude that dimLm(Π) = 1, and hence by part (ii) of the
proposition we conclude that π occurs with multiplicity 1 as subquotient of
Θ/�. If d > 1 one can still run the same argument concluding that π occurs
with multiplicity at most d as subquotient of Θ/(�) by using rings with
polynomial identity.

All the previous constructions and the strategy of proof explained above
work in great generality (G was any p-adic analytic group), provided certain
conditions are satisfied, the hardest of which is finding a family {Πi}i∈I ,
which enjoys all these nice properties. From now on we let G = GL2(Qp),
and let Mod?G(O) = Modl.admG (O), the category of locally admissible rep-
resentations. This category, introduced by Emerton in [35], consists of all
representations in ModsmG (O), which are equal to the union of their ad-
missible subrepresentations. For the family {Πi}i∈I we take all the Banach
representations corresponding to 2-dimensional crystalline representations
of GQp

. It follows from the explicit description [4] of Π
ss
i , that π can occur as

a subquotient with multiplicity at most 2, and multiplicity one if π is either
supersingular or generic principal series.

The statement ∩i∈Iai = 0 morally is the statement “crystalline points
are dense in the universal deformation ring”, so one certainly expects it to
be true, since on the Galois side this statement is known [17, 43] to be true8.
In fact, Emerton has proved an analogous global statement “classical crys-
talline points are dense in the big Hecke algebra” by using GL2-methods,

8If we assume that p ≥ 5 then using results of [54] one may show that the
assertion on the Galois side implies the assertion on the GL2(Qp)-side.
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[34, cor. 5.4.6]. The Banach representation denoted by Π(P ) in § 2.2 is a
local analog of Emerton’s completed cohomology. However, Emerton’s argu-
ment does not seem to carry over directly, since although P is projective in
ModproK (O), it is not a finitely generated O �K� -module, and in our context
the locally algebraic vectors in Π(P ) are not a semi-simple representation
of GL2(Qp). Because of this we do not prove directly that ∩iai = 0, but a
weaker statement, which suffices for the argument to work. To get around
the issue that P is not finitely generated over O �K� we have to perform
some tricks, see propositions 2.18, 2.19.

2.2. Proof of proposition 2.1

Proof. Part (i) is [54, prop. 4.17].

Part (ii) follows from the proof of [54, lem. 4.15], which unfortunately
assumes Θd⊗Ok to be of finite length. This assumption is not necessary: since
Θd is an object of C(O) we may write Θd⊗O k ∼= lim←−Mi, where the projective
limit is taken over all the finite length quotients. Since P is projective we
obtain an isomorphism HomC(O)(P,Θ

d ⊗O k) ∼= lim←−HomC(O)(P,Mi). Since
Mi are of finite length, [54, lem. 3.3] says that dimk HomC(O)(P,Mi) is equal
to the multiplicity with which π∨ occurs in Mi as a subquotient, which is
the same as the multiplicity with which π occurs in M∨

i . Dually we obtain
Θ ⊗O k ∼= (Θd ⊗O k)∨ ∼= lim−→M∨

i , which allows to conclude that π occurs

with finite multiplicity in Θ ⊗O k if and only if dimk HomC(O)(P,Θ
d ⊗O k)

is finite, in which case both numbers coincide. Since P is a compact flat O-
module and a projective object in C(O), it follows that HomC(O)(P,Θ

d) is a

compact, flat O-module, which is congruent to HomC(O)(P,Θ
d/(�)) modulo

�, thus dimLHomC(O)(P,Θ
d)⊗O L = dimk HomC(O)(P,Θ

d ⊗O k).

Part (iii) a) is [54, prop. 4.18 (ii)] and Part (iii) b) is [54, prop. 4.19].

2.3. Rings with polynomial identity

Definition 2.2. Let R be a (possibly non-commutative) ring and let n be a
natural number. We say that R satisfies the standard identity sn if for every
n-tuple Φ = (φ1, . . . , φn) of elements of R we have

sn(Φ) :=
�

σ

sgn(σ)φσ(1) . . . φσ(n) = 0,

where the sum is taken over all the permutations of the set {1, . . . , n}.
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Remark 2.3. (i) Since s2(φ1, φ2) = φ1φ2 − φ2φ1, the ring R satisfies the
standard identity s2 if and only if R is commutative.

(ii) We note that R satisfies sn if and only if the opposite ring Rop

satisfies sn.
(iii) Let {ai}i∈I be a family of ideals of R such that

�
i∈I ai = 0. Then

R satisfies sn if and only if R/ai satisfies sn for all i ∈ I.
(iv) By a classical result of Amitsur and Levitzki [46, thm. 13.3.3], for

any commutative ring A, the ring Mn(A) satisfies the standard identity s2n.

Lemma 2.4. Let A be a commutative ring, n ≥ 1 and let M be an A-module
which is a quotient of An. Then EndA(M) satisfies the standard identity s2n.

Proof. By hypothesis there are e1, . . . , en ∈ M generating M as an A-
module. Let φ1, . . . , φ2n ∈ EndA(M) and let X(1), . . . , X(2n) ∈ Mn(A) be

matrices such that φk(ei) =
� n

j=1X
(k)
ji ej for all i ≤ n and k ≤ 2n. Setting

X = s2n(X
(1), . . . , X(2n)), for all i ≤ n we have

s2n(φ1, . . . , φ2n)(ei) =

n�

j=1

Xjiej .

By remark 2.3 (iv) we have X = 0 and the result follows.

Lemma 2.5. Let A be a commutative noetherian ring, let M be an A-
module, such that every finitely generated submodule is of finite length, and
let n be an integer. If dimκ(m)M [m] ≤ n for every maximal ideal m of A
then EndA(M) satisfies the standard identity s2n.

Proof. The assumption on M implies that M ∼= ⊕mM [m∞], where the sum
is taken over all maximal ideals in A and M [m∞] = lim−→M [mn], where
M [mn] = {m ∈ M : am = 0, ∀a ∈ mn}. Since M [m∞] is only supported
on {m}, if m1 �= m2 then HomA(M [m∞

1 ],M [m∞
2 ]) = 0. Thus EndA(M) ∼=�

m EndA(M [m∞]) and it is enough to show the assertion in the case when
M = M [m∞], which we now assume.

Since in this case EndA(M) = EndÂ(M), where Â is the m-adic comple-
tion of A, we may further assume that (A,m) is a complete local ring. Let
E(κ(m)) be an injective envelope of κ(m) in the category of A-modules. The
functor (∗)∨ := HomA(∗, E(κ(m))) induces an anti-equivalence of categories
between artinian and noetherian A-modules, see [38, thm. A.35]. Hence,
EndA(M) ∼= EndA(M

∨)op. Since M [m] ↪→ M is essential, we may embed
M ↪→ E(κ(m))⊕d, where d = dimκ(m)M [m]. Since E(κ(m))∨ ∼= A by [38,

thm. A.31], we obtain a surjection A⊕d � M∨. We deduce from lemma 2.4
that EndA(M

∨) satisfies the standard identity s2n.
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2.4. Density

Let K be a pro-finite group with an open pro-p subgroup. Let O �K� be
the completed group algebra, and let ModproK (O) be the category of com-
pact linear-topological O �K� -modules. Let {Vi}i∈I be a family of contin-
uous representations of K on finite dimensional L-vector spaces, and let
M ∈ ModproK (O).

Definition 2.6. We say that {Vi}i∈I captures M if the smallest quotient
M � Q, such that Homcont

O �K� (Q,V ∗
i )

∼= Homcont
O �K� (M,V ∗

i ) for all i ∈ I is
equal to M .

Lemma 2.7. Let N =
�

φKerφ, where the intersection is taken over al l

φ ∈ Homcont
O �K� (M,V ∗

i ), for al l i ∈ I. Then {Vi}i∈I captures M if and only if
N = 0.

Proof. It is immediate that Homcont
O �K� (M/N, V ∗

i )
∼= Homcont

O �K� (M,V ∗
i ) for all

i ∈ I. This implies the assertion.

Lemma 2.8. Let M ′ be a closed O �K� -submodule of M . If {Vi}i∈I captures
M , then it also captures M ′.

Proof. Let v ∈ M ′ be non-zero. Since {Vi}i∈I captures M , lemma 2.7 implies
that there exist i ∈ I and φ ∈ Homcont

O �K� (M,V ∗
i ), such that φ(v) �= 0. Thus

�
φKerφ = 0, where the intersection is taken over all φ ∈ Homcont

O �K� (M
′, V ∗

i ),

for all i ∈ I. Lemma 2.7 implies that {Vi}i∈I captures M ′.

Lemma 2.9. Assume that {Vi}i∈I captures M and let φ ∈ EndcontO �K� (M). If

φ kil ls Homcont
O �K� (M,V ∗

i ) for al l i ∈ I then φ = 0.

Proof. The assumption on φ implies that

Homcont
O �K� (Cokerφ, V

∗
i )

∼= Homcont
O �K� (M,V ∗

i ), ∀i ∈ I.

Since {Vi}i∈I captures M , we deduce that M = Cokerφ and thus φ = 0.

Lemma 2.10. Let M ∈ ModproK (O) be O-torsion free. Then {Vi}i∈I captures
M if and only if the image of the evaluation map

	

i∈I
HomK(Vi,Π(M))⊗L Vi → Π(M)

is a dense subspace, where Π(M) := Homcont
O (M,L) is an L-Banach space

equipped with the supremum norm.
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Proof. It follows from [57, thm. 1.2] that the evaluation mapM×Π(M) → L
induces an isomorphism

(3) M ⊗O L ∼= Homcont
L (Π(M), L).

If ϕ ∈ Homcont
O �K� (M,V ∗

i ) then ϕd(v)(m) := ϕ(m)(v) defines K-equivariant

L-linear homomorphism ϕd : Vi → Π(M). It follows from [57, thm. 1.2] that
the map ϕ �→ ϕd induces an isomorphism

(4) Homcont
O �K� (M,V ∗

i )
∼= HomK(Vi,Π(M)).

Let m ∈ M and let �m be the image of m in Homcont
L (Π(M), L) under (3).

Then for all i ∈ I and all ϕ ∈ Homcont
O �K� (M,V ∗

i ), ϕ(m) = 0 if and only if

�m ◦ ϕd = 0. Using lemma 2.7 and isomorphisms (3), (4) we deduce that
{Vi}i∈I does not capture M if and only if the image of the evaluation map
⊕iHomK(Vi,Π(M))⊗L Vi → Π(M) is not a dense subspace.

Lemma 2.11. The fol lowing assertions are equivalent:

(i) {Vi}i∈I captures every indecomposable projective in ModproK (O);
(ii) {Vi}i∈I captures every projective in ModproK (O);
(iii) {Vi}i∈I captures O �K� .

Proof. (i) implies (ii). Let P be a projective object in ModproK (O). Then
P ∼=

�
j∈J Pj , where Pj is projective indecomposable for every j ∈ J , see

[26, V.2.5.4]. For each j ∈ J let pj : P → Pj denote the projection. Since
{Vi}i∈I captures Pj by assumption, it follows from lemma 2.7 that Ker pj =
∩φKerφ ◦ pj , where the intersection is taken over all φ ∈ Homcont

O �K� (Pj , V
∗
i ),

for all i ∈ I. Since ∩j∈J Ker pj = 0, we use lemma 2.7 again to deduce that
{Vi}i∈I captures P .

(ii) implies (iii), as O �K� is projective in ModproK (O).

(iii) implies (i). Every indecomposable projective object in ModproK (O)
is a direct summand of O �K� , see for example [51, prop. 4.2]. The assertion
follows from lemma 2.8.

Let G be an affine group scheme of finite type over Zp such that GL

is a split connected reductive group over L. Let Alg(G) be the set isomor-
phism classes of irreducible rational representations of GL, which we view
as representations of G(Zp) via the inclusion G(Zp) ⊂ G(L).

Proposition 2.12. Alg(G) captures every projective object in ModproG(Zp)
(O).
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Proof. The proof is very much motivated by [34, prop. 5.4.1], which implies
the statement for G = GL2. Let K = G(Zp) and let C (K,L) be the space
of continuous functions from K to L. Since K is compact, the supremum
norm makes C (K,L) into a unitary L-Banach representation of K. It is
shown in [57, lem. 2.1, cor. 2.2] that the natural map K → O �K� , g �→ g
induces an isometrical, K-equivariant isomorphism between C (K,L) and
Homcont

O (O �K� , L). It is shown in [52, prop. A.3] that the image of the eval-
uation map ⊕HomK(V,C (K,L))⊗V → C (K,L) is a dense subspace, where
the sum is taken over all V ∈ Alg(G). Lemma 2.10 implies that Alg(V ) cap-
tures O �K� , and the assertion follows from lemma 2.11.

2.5. Locally algebraic vectors in Π(P )

From now on let G = GL2(Qp), K = GL2(Zp), and let π be an admis-
sible smooth, absolutely irreducible k-representation of G. Recall that if
χ1, χ2 : Q×

p → k× are smooth characters, then

π{χ1, χ2} := (IndGBχ1 ⊗ χ2ω
−1)sssm ⊕ (IndGBχ2 ⊗ χ1ω

−1)sssm.

Definition 2.13. If π is supersingular, let d(π) = 1. Otherwise, there is a
unique π{χ1, χ2} containing π and we let d(π) be the multiplicity of π in
π{χ1, χ2}.
Lemma 2.14. Let χ1, χ2 : Q×

p → k× be smooth characters. Then π{χ1, χ2}
is isomorphic to one of the fol lowing:

(i) (IndGB χ1 ⊗ χ2ω
−1)sm ⊕ (IndGB χ2 ⊗ χ1ω

−1)sm, if χ1χ
−1
2 �= 1, ω±1;

(ii) (IndGB χ⊗ χω−1)⊕2
sm, if χ1 = χ2 = χ and p ≥ 3;

(iii) (1⊕ Sp⊕ IndGB ω ⊗ ω−1)⊗ χ ◦ det, if χ1χ
−1
2 = ω±1 and p ≥ 5;

(iv) (1⊕ Sp⊕ω ◦ det⊕ Sp⊗ω ◦ det)⊗ χ ◦ det, if χ1χ
−1
2 = ω±1 and p = 3;

(v) (1⊕ Sp)⊕2 ⊗ χ ◦ det if χ1 = χ2 and p = 2.

In particular, d(π) = 1 unless we are in one of the fol lowing cases, when
d(π) = 2:

(a) p ≥ 3 and π ∼= (IndGB χ⊗ χω−1)sm or
(b) p = 2 and either π ∼= χ ◦ det or π ∼= Sp⊗χ ◦ det, for some smooth

character χ : Q×
p → k×.

Proof. The representation (IndGB χ1 ⊗ χ2ω
−1)sm is irreducible if and only if

χ1 �= χ2ω
−1, otherwise its semi-simplification consists of a character and a

twist of the Steinberg representation, see [2, thm. 30]. The result follows.
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Let Modl.admG (O) be the category of locally admissible representations
introduced by Emerton in [35]. Proposition 2.2.18 in [35] shows that this cat-
egory is closed under subquotients and arbitrary direct sums in ModsmG (O),
and theorem 2.3.8 in [35] implies that every locally admissible representation
is a union of its subrepresentations of finite length. So Modl.admG (O) satisfies
the conditions imposed on Mod?G(O) in § 2.1. Let C(O) be the full subcate-
gory of ModproG (O), which is anti-equivalent to Modl.admG (O) via Pontryagin
duality. We have BanadmC(O) = BanadmG (L).

Let P � π∨ be a projective envelope of π∨ in C(O) and let

E := EndC(O)(P ).

Then π ↪→ P∨ is an injective envelope of π in Modl.admG (O). The following
result is [36, cor. 3.10].

Proposition 2.15. The restriction of P∨ to K is injective in ModsmK (O),
hence P is projective in ModproK (O).

In particular9, P is a torsionfree, compact linear-topological O-module.
Let

Π(P ) := Homcont
O (P,L)

with the topology induced by the supremum norm. If Π is an L-Banach
space and if Θ is an open, bounded lattice in Π, let Θd := HomO(Θ,O)
be its Schikhof dual. Equipped with the topology of pointwise convergence,
Θd is a torsionfree, compact linear-topological O-module and it follows from
[57, thm. 1.2] that we have a natural isomorphism:

(5) Homcont
L (Π,Π(P )) ∼= Homcont

O (P,Θd)⊗O L.

We want to use (5) in two ways, which are consequences of [57, thm. 2.3]. If
Π is an admissible unitary L-Banach representation of G and Θ is an open,
bounded, G-invariant lattice in Π, then Θd is in C(O) and we have:

(6) Homcont
G (Π,Π(P )) ∼= HomC(O)(P,Θ

d)⊗O L = m(Π)

On the other hand, if V is a continuous representation of K on a finite
dimensional L-vector space and if Θ is a K-invariant lattice in V , then

(7) HomK(V,Π(P )) ∼= Homcont
O �K� (P,Θ

d)⊗O L ∼= Homcont
O �K� (P, V

∗).

9Alternatively one may argue in the same way as in [54, cor. 5.19].
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We note that since V is finite dimensional any L-linear map is continuous.

Let Alg(G) be the set of isomorphism classes of irreducible rational rep-
resentations of GL2 /L, which we view as representations of GL2(Zp) via the
inclusion GL2(Zp) ⊂ GL2(L). For V ∈ Alg(G) let AV := EndG(c-Ind

G
K V ).

It follows from [8, rem. 2.1.4.2] that AV
∼= EndG(c-Ind

G
K 1) ∼= L[t, z±1]. In

particular, AV is a commutative noetherian ring. Frobenius reciprocity gives

HomK(V,Π(P )) ∼= HomG(c-Ind
G
K V,Π(P )).

Hence, HomK(V,Π(P )) is naturally an AV -module. We transport the action
of AV onto Homcont

O �K� (P, V
∗) via (7).

Proposition 2.16. Let V ∈ Alg(G) and let m be a maximal ideal of AV .
Then

dimκ(m)HomG(κ(m)⊗AV
c-IndGK V,Π(P )) ≤ d(π).

Proof. It follows from [8, prop. 3.2.1] that

(8) κ(m)⊗AV
c-IndGK V ∼= (IndGB δ1 ⊗ δ2| · |−1)sm ⊗L V,

where δ1, δ2 : Q×
p → κ(m)× are unramified characters with δ1| · | �= δ2 and

the subscript sm indicates smooth induction. Let Π be the universal unitary
completion of κ(m)⊗AV

c-IndGK V . Since the action of G on Π(P ) is unitary,
the universal property of Π implies that

(9) HomG(κ(m)⊗AV
c-IndGK V,Π(P )) ∼= Homcont

G (Π,Π(P ))
(6)∼= m(Π).

It is proved in [52, prop. 2.10], using results of Berger–Breuil [5] as the
main input, that Π is an admissible finite length κ(m)-Banach representa-
tion of G. Moreover, if Π is non-zero then Π

ss
is either irreducible supersin-

gular, or Π
ss ⊆ π{χ1, χ2} for some smooth characters χ1, χ2 : Q×

p → k×κ(m).

Lemma 2.14 implies that π⊗kkκ(m) can occur in Π
ss
with multiplicity at most

d(π). Hence, if Θ is an open, bounded andG-invariant lattice in Π, then π can
occur as a subquotient of Θ/(�) with multiplicity at most [κ(m) : L]d(π).
Proposition 2.1 (ii) yields dimLm(Π) ≤ [κ(m) : L]d(π). The result follows
from (9).

Corollary 2.17. For al l V ∈ Alg(G) and al l maximal ideals m of AV we
have

dimκ(m)Homcont
O �K� (P, V

∗)[m] ≤ d(π).
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Proof. By (7) we have Homcont
O �K� (P, V

∗)[m] ∼= HomK(V,Π(P ))[m]. On the
other hand, Frobenius reciprocity gives an isomorphism

HomK(V,Π(P ))[m] ∼= HomG(c-Ind
G
K V,Π(P ))[m]

∼= HomG(κ(m)⊗AV
c-IndGK V,Π(P )).

(10)

The result follows therefore from proposition 2.16.

2.6. Proof of theorem 1.4

Proposition 2.18. Let ϕ : P � M be a quotient in C(O), such that M is
of finite length. Then ϕ factors through ψ : P → N in C(O), such that N is
a finitely generated projective O �K� -module.

Proof. We claim that there exists a surjection θ : N � M in C(O) with N a
finitely generated projective O �K� -module. The claim implies the assertion,
since the projectivity of P implies that there exists ψ : P → N , such that
θ ◦ ψ = ϕ. The proof of the claim is a variation of the construction, which
first appeared in [47], and then was generalized in [12] and [36]. Let G0 =
{g ∈ G : det g ∈ Z×

p } and let G+ = ZG0, where Z is the centre of G.

Since M∨ is of finite length in Modl.admG (O), M∨ is admissible. It follows
from [36, thm. 3.4] that there exists an injection M∨ ↪→ Ω in ModadmG0 (O),
such that M∨|K ↪→ Ω|K is an injective envelope of M∨ in ModsmK (O) and
Ω ∼= Ωc, where Ωc denotes the action of G0 twisted by conjugation with
an element

�
0 1
p 0

�
. Dually we obtain a continuous, G0-equivariant surjection

θ0 : Ω∨ � M , such that its restriction to K is a projective envelope of M
in ModproK (O).

We let A := O[t, t−1] act on M by letting t act as the matrix
� p 0
0 p

�
. Since

M is a quotient of P , its cosocle in C(O) is isomorphic to π∨, and hence is
irreducible. This implies that M is indecomposable. Moreover, M is finite
length by assumption. The argument of [36, cor. 3.9] shows that there exists
a monic polynomial f ∈ O[t] and a natural number n, such that (�, f) is a
maximal ideal of A, and the action of A on M factors through A/(fn). Since
f is monic A/(fn) is a free O-module of finite rank. Hence, the restriction
of N+ := A/(fn) ⊗O Ω∨ to K is a finite direct sum of copies of Ω∨, which
implies that N+ is a finitely generated projective O �K� -module. We put an

action of G+ on N+ by using G+ =
� p 0
0 p

� Z×G0. The map t⊗v �→ θ0(
� p 0
0 p

�
v)

induces a G+-equivariant surjection θ+ : N+ � M . Let N := IndGG+ N+,
then by Frobenius reciprocity we obtain a surjective map θ : N � M . Since
G+ is of index 2 in G, and

�
0 1
p 0

�
is a representative of the non-trivial coset,
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we have N |G+ ∼= N+ ⊕ (N+)c ∼= N+ ⊕N+, where the subscript c indicates

that the action of G+ is twisted by conjugation with
�
0 1
p 0

�
, and the last

isomorphism follows from Ω ∼= Ωc. Hence, N satisfies the conditions of the

claim.

If V is a continuous representation of K on a finite dimensional L-vector

space and if Θ is an open, bounded and K-invariant lattice in V , let | � | be
the norm on V ∗ given by |�| := supv∈Θ |�(v)|, so that Θd = HomO(Θ,O) is

the unit ball in V ∗ with respect to | � |. The topology on Homcont
O �K� (P, V

∗)

is given by the norm ‖φ‖ := supv∈P |φ(v)|, and Homcont
O �K� (P,Θ

d) is the unit

ball in this Banach space.

Proposition 2.19. For al l V as above the submodule

Homcont
O �K� (P, V

∗)l.fin := {φ ∈ Homcont
O �K� (P, V

∗) : �AV
(AV φ) < ∞}

is dense in Homcont
O �K� (P, V

∗), where �AV
(AV φ) is the length of AV φ as an

AV -module.

Proof. Let A = AV . It is enough to show that for each φ ∈ Homcont
O �K� (P,Θ

d)

and each n ≥ 1 there exists ψn ∈ Homcont
O �K� (P,Θ

d) such that the A-submod-

ule generated by ψn is of finite length, and φ ≡ ψn (mod �n).

Let φn be the composition P
φ→ Θd � Θd/(�n). Dually we obtain a map

φ∨
n : (Θd/(�n))∨ → P∨. Let τ be the G-subrepresentation of P∨ generated

by the image of φ∨
n . Since P∨ is in Modl.admG (O) any finitely generated G-

subrepresentation is of finite length. Since (Θd/(�n))∨ is a finite O-module,

we deduce that τ is of finite length. Thus φn factors through P � τ∨ in

C(O), with τ∨ of finite length. Proposition 2.18 implies that this map factors

through ψ : P → N with N finitely generated and projective O �K� -module.

Since N is projective, using the exact sequence

0 → Θd 	n

→ Θd → Θd/(�n) → 0,

we deduce that there exists θn ∈ Homcont
O �K� (N,Θd), which maps to φn ∈

Homcont
O �K� (N,Θd/(�n)). Let ψn = θn ◦ ψ. Then by construction φ ≡ ψn

(mod �n). Since ψ is G-equivariant, Homcont
O �K� (N,V ∗)

◦ψ→ Homcont
O �K� (P, V

∗)
is a map of A-modules, which contains ψn in the image. Since N is a finitely

generated O �K� -module, Homcont
O �K� (N,V ∗) is a finite dimensional L-vector

space, thus the A-submodule generated by ψn is of finite length.
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Corollary 2.20. Let aV be the E[1/p]-annihilator of Homcont
O �K� (P, V

∗). Then

E[1/p]/aV satisfies the standard identity s2d(π) (see definition 2.13 for d(π)).

Proof. Since the action of E preserves the unit ball in Homcont
O �K� (P, V

∗),

E[1/p] acts by continuous endomorphisms, which commute with the ac-
tion of AV . It follows from proposition 2.19 that E[1/p]/aV injects into
EndAV

(Homcont
O �K� (P, V

∗)l.fin). It follows from proposition 2.16 and lemma 2.17
that

dimκ(m)Homcont
O �K� (P, V

∗)l.fin[m] ≤ d(π),

for every maximal ideal m of AV . The assertion follows from lemma 2.5.

Theorem 2.21. Let Π be a unitary admissible absolutely irreducible L-Ba-
nach space representation of G and let Θ be an open bounded G-invariant
lattice in Π. Then π occurs with multiplicity ≤ d(π) as a subquotient of
Θ⊗O k.

Proof. Let d = d(π), then it is enough to prove that dimLm(Π) ≤ d by
proposition 2.1 (ii). It follows from propositions 2.15 and 2.12 that Alg(G)
captures P , and lemma 2.7 (ii) implies that

�
V ∈Alg(G) aV = 0, where aV is

defined in corollary 2.20. We deduce from corollary 2.20 and remark 2.3 that
E[1/p] satisfies the standard identity s2d. Thus, if E is the image of E[1/p]
in EndL(m(Π)), then E satisfies the standard identity s2d.

Since Π is irreducible, it follows from proposition 2.1(iii)a) that m(Π)
is an irreducible E -module, which is clearly faithful. Proposition 2.1(iii)b)
shows that EndE (m(Π)) = EndcontG (Π)op. On the other hand, since Π is
absolutely irreducible, Schur’s lemma [27, thm. 1.1.1] yields EndcontG (Π) = L,
hence EndE (m(Π)) = L. A theorem of Kaplansky, see [56, thm. II.1.1] and
[56, cor. II.1.2], implies that dimLm(Π) ≤ d, which is the desired result.

Corollary 2.22. Let π be an absolutely irreducible smooth representation
and let P � π∨ be a projective envelope of π∨ in C(O), where C(O) is the
Pontryagin dual of Modl.admG (O). If one of the fol lowing holds:

(i) π is supersingular;
(ii) π ∼= (IndGB χ1 ⊗ χ2ω

−1)sm and χ1χ
−1
2 �= ω±1, 1;

(iii) π ∼= (IndGB χω ⊗ χω−1)sm and p ≥ 5;
(iv) π ∼= Sp⊗χ ◦ det and p ≥ 3;
(v) π ∼= χ ◦ det and p ≥ 3;

then the ring E := EndC(O)(P ) is commutative.

Proof. In these cases d(π) = 1, and the assertion follows from the proof of
theorem 2.21 and remark 2.3.
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Corollary 2.23. Let Π be a unitary admissible absolutely irreducible L-Ba-
nach space representation of G and let Θ be an open bounded G-invariant
lattice in Π. Then Θ⊗O k is of finite length. Moreover, one of the fol lowing
holds:

(i) Θ⊗O k is absolutely irreducible supersingular;
(ii) Θ⊗O k is irreducible and

Θ⊗O l ∼= (IndGP χ⊗ χσω−1)sm ⊕ (IndGP χσ ⊗ χω−1)sm

where l is a quadratic extension of k, χ : Q×
p → l× is a smooth charac-

ter and χσ is a conjugate of χ by the non-trivial element in Gal(l/k);
(iii) (Θ⊗O k)ss ⊆ π{χ1, χ2} for some smooth characters χ1, χ2 : Q×

p → k×.

Proof. Let π be an irreducible subquotient of Θ⊗O k. If π′ is another irre-
ducible subquotient of Θ⊗Ok then π and π′ lie in the same block by [54, prop.
5.36], which means that there exist irreducible smooth k-representations
π = π0, . . . , πn = π′, such that for all 0 ≤ i < n either Ext1G(πi, πi+1) �= 0
or Ext1G(πi+1, πi) �= 0. The blocks containing an absolutely irreducible rep-
resentation have been determined in [52], and consist of either a single su-
persingular representation, or of all irreducible subquotients of π{χ1, χ2} for
some smooth characters χ1, χ2 : Q×

p → k×. These irreducible subquotients
are listed explicitly in lemma 2.14. If π is absolutely irreducible, it follows
from theorem 2.21 that if π is supersingular then (i) holds, if π is not su-
persingular then the multiplicity with which π occurs as a subquotient of
Θ⊗O k is less or equal to the multiplicity with which π occurs in π{χ1, χ2},
which implies that (iii) holds. If π is not absolutely irreducible, then arguing
as in the proof of corollary 5.44 of [54] we deduce that (ii) holds.

3. Injectivity of the functor Π �� V(Π)

In this chapter we prove theorems 1.8 and 1.9 as well as their consequences
stated in the introduction. After a few preliminaries devoted to the the-
ory of (ϕ,Γ)-modules and various constructions involved in the p-adic local
Langlands correspondence [20], we give a detailed overview of the (rather
technical) proofs. We then go on and supply the technical details of the
proofs.

3.1. Preliminaries

3.1.1. (ϕ,Γ)-modules. Let OE be the p-adic completion of O[[T ]][T−1],
E = OE [p

−1] the field of fractions of OE and let R be the Robba ring,
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consisting of those Laurent series
�

n∈Z anT
n ∈ L[[T, T−1]] which converge

on some annulus 0 < vp(T ) ≤ r, where r > 0 depends on the series.

Let ΦΓet(E ) be the category of étale (ϕ,Γ)-modules over E . These are
finite dimensional E -vector spaces D endowed with semi-linear10 and com-
muting actions of ϕ and Γ = Gal(Qp(μp� )/Qp) (isomorphic to Z×

p via ε),
such that the action of ϕ is étale11. Each D ∈ ΦΓet(E ) is naturally endowed
with an operator ψ, which is left-inverse to ϕ and commutes with Γ.

The category ΦΓet(E ) is equivalent [41] to the category RepL(GQp
) of

continuous finite dimensional L-representations of GQp
. Cartier duality12 on

RepL(GQp
) induces a Cartier duality D → Ď on ΦΓet(E ). All these con-

structions have integral and torsion analogues, which will be used without
further comment.

The category ΦΓet(E ) is equivalent, by [16, 6] and [42], to the category
of (ϕ,Γ)-modules of slope 0 on R. For D ∈ ΦΓet(E ) we let Drig be the
associated (ϕ,Γ)-module over R.

3.1.2. Analytic operations on (ϕ,Γ)-modules. The monoid P+ =
( Zp−{0} Zp

0 1
) acts naturally on Zp by ( a b

0 1 )x = ax + b. Any D ∈ ΦΓet(E )
carries a P+ action, defined by

�
pka b
0 1

�
z = (1 + T )bϕk ◦ σa(z)

for a ∈ Z×
p , b ∈ Zp and k ∈ N.

D also gives rise to a P+-equivariant sheaf U �→ D � U on Zp, whose
sections on i+pkZp are ( p

k i
0 1

)D ⊂ D = D�Zp and for which the restriction

map Resi+pkZp
: D�Zp → D� (i+pkZp) is given by ( 1 i

0 1 )◦ϕk ◦ψk ◦ ( 1 −i
0 1 ).

Let U be an open compact subset of Zp and let φ : U → L be a continuous
function. By [19, prop. V.2.1], the limit

mφ(z) = lim
N→∞

�

i∈IN (U)

φ(i)Resi+pNZp
(z)

exists for all z ∈ D�U , and it is independent of the system of representatives
IN (U) of U mod pN . Moreover, the resulting map mφ : D � U → D � U is
L-linear and continuous.

10The rings OE ,E ,R are endowed with a Frobenius ϕ and an action of Γ defined
by ϕ(T ) = (1+T )p− 1 and σa(T ) = (1+T )a− 1, where σa ∈ Γ satisfies ε(σa) = a.

11This means that the matrix of ϕ in some basis of D belongs to GLd(OE ), where
d = dimE (D).

12Sending V to V̌ := V ∗ ⊗ ε, where V ∗ is the L-dual of V .
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In the same vein [19, prop. V.1.3], if U, V are compact open subsets of Zp

and if f : U → V is a local diffeomorphism, there is a direct image operator

f∗ : D � U → D � V, f∗(z) = lim
N→∞

�

i∈IN (U)



f � (i) f(i)
0 1

�
RespnZp

(
�
1 −i
0 1

�
z).

The following result (see § V.1 and V.2 in [19]) summarizes the main prop-
erties of these operators (which also have integral and torsion versions, see
loc.cit.).

Proposition 3.1. Let U, V be compact open subsets of Zp.
a) For al l continuous maps φ1, φ2 : U → L we have mφ1 ◦mφ2 = mφ1φ2 .
b) If f : U → V is a local diffeomorphism and φ : V → L is continuous,

then

f∗ ◦mφ◦f = mφ ◦ f∗.
c) If f : U → V and g : V → W are local diffeomorphisms, then

g∗ ◦ f∗ = (g ◦ f)∗.
d) If φ : U → L is a continuous map and V ⊂ U , then mφ commutes

with ResV .
e) If φ : Z×

p → L is constant on a+ pnZp for al l a ∈ Z×
p , then

mφ =
�

i∈(Z/pnZ)×

φ(i)Resi+pnZp
.

3.1.3. From GL2(Qp) to Gal(Qp/Qp)-representations and back. Let
G = GL2(Qp). We refer the reader to the introduction for the definition of
the category RepL(G), and to [20, ch. IV] (or to [23, § III.2] for a sum-
mary) for the construction and study of an exact and contravariant functor
D : RepL(G) → ΦΓet(E ). Composing this functor with Fontaine’s [41] equiv-
alence of categories and Cartier duality, we obtain an exact covariant functor
Π �→ V(Π) from RepL(G) to RepL(GQp

). We will actually work with the
functor D, even though some results will be stated in terms of the more
familiar functor V.

In the opposite direction, δ being fixed, there is a functor from ΦΓet(E )
to the category of G-equivariant sheaves of topological L-vector spaces on
P1 = P1(Qp) (the space of sections on an open set U of P1 of the sheaf
associated to D is denoted by D�δ U). If D ∈ ΦΓet(E ), then the restriction
to Zp of the sheaf U �→ D �δ U is the P+-equivariant sheaf attached to D
as in no 3.1.2 (in particular it does not depend on δ). The space D �δ P

1 of
global sections of the sheaf attached to D and δ is naturally a topological
G-module.
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Definition 3.2. If δ : Q×
p → O× is a unitary character then we let RepL(δ)

be the full subcategory of RepL(G) consisting of all representations with

central character δ and we let MF (δ) be the essential image of D|RepL(δ)
.

The following result is a combination of the main results of [23, chap. III].

Proposition 3.3. If δ : Q×
p → O× is a unitary character then there is a

functor

MF (δ−1) → RepL(δ), D �→ Πδ(D)

such that for al l D ∈ MF (δ−1), the fol lowing hold:

(i) If η is a unitary character, then13 D(η) ∈ MF (η−2δ−1) and

Πη2δ(D(η)) ∼= Πδ(D)⊗ (η ◦ det).

(ii) Ď ∈ MF (δ) and there is an exact sequence14

0 → ΠδŠ 1 (Ď)∗ → D �δ P
1 → Πδ(D) → 0.

(iii) There is a canonical isomorphism D(Πδ(D)) ∼= Ď.

(iv) If dim(D) ≥ 2, then D is irreducible if and only if Πδ(D) is irre-

ducible.

All these constructions have natural integral and torsion variants, which

will be used without further comment: for instance, if D0 is an OE -lattice

in D ∈ MF (δ−1) which is stable by ϕ and Γ, then Πδ(D0) is an open,

bounded and G-invariant lattice in Πδ(D).

The next result is the main ingredient for the proof of the surjectivity

of the p-adic Langlands correspondence for G (cf. § 1.3). Note that if D ∈
ΦΓet(E ), then detD corresponds by Fontaine’s equivalence of categories to a

continuous character of GQp
, which in turn can be seen as a unitary character

detD : Q×
p → O× by local class field theory. We define

δD : Q×
p → O×, δD = ε−1 detD.

Proposition 3.4. If D ∈ ΦΓet(E ) is 2-dimensional, then D ∈ MF (δ−1
D ).

Proof. This is a restatement of [24, th. 10.1].

13D(η) is the (ϕ,Γ)-module obtained by twisting the action of ϕ and Γ by η.
14Of topological G-modules, where ΠδŠ 1 (Ď)∗ is the weak dual of ΠδŠ 1 (Ď).
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3.2. Uniqueness of the central character

In this § we explain the steps of the proof of the following theorem, which
is the main result of this chapter.

Theorem 3.5. Let D ∈ ΦΓet(E ) be absolutely irreducible, 2-dimensional.
If D ∈ MF (δ−1) for some unitary character δ, then δ = δD.

For the rest of this § we let D ∈ ΦΓet(E ) be as in theorem 3.5. Let
D+ be the set of z ∈ D such that the sequence (ϕn(z))n≥0 is bounded
in D. The module D+ is the largest finitely generated E +-submodule of D,
stable under ϕ and Γ. We say that D is of finite height if D+ spans D as
E -vector space or, equivalently (since D is irreducible) if D+ �= {0}. The
classification of representations of finite height given in [3] shows that if D
is of finite height, then D is trianguline15, so it suffices to treat the cases “D
trianguline” and “D+ = {0}”.

3.2.1. The trianguline case. Suppose that D is trianguline and recall
that δD = ε−1 detD is seen as a unitary character of Q×

p . Suppose that
D ∈ MF (δ−1) for some unitary character δ. Let Π = Πδ(D) and define
η = δ−1

D δ. Also, let Πan be the space of locally analytic vectors of Π, for
which we refer the reader to [58] and [33].

We first prove that η is locally constant. The argument works for a
much more general class of (ϕ,Γ)-modules, namely those corresponding to
representations which are not Cp-admissible16 up to a twist (this condi-
tion is automatically satisfied by irreducible trianguline (ϕ,Γ)-modules [17,
prop. 4.6]). The proof uses two ingredients

• By [23, chap. VI] and the hypothesis D ∈ MF (δ−1), there is a G-
equivariant sheaf of locally analytic representations U �→ Drig �δU attached
to (Drig, δ).

• Using [29, 30], one can describe the action of Lie(GL2(Qp)) on the
space Drig �δ P

1 of global sections of this sheaf. The fact that η is locally
constant follows easily.

The second part of the proof in the trianguline case consists in analyzing
the module Drig �δ P1. More precisely, we prove (lemma 3.20) that any
triangulation 0 → R(δ1) → Drig → R(δ2) → 0 of Drig extends to an exact
sequence of topological G-modules

0 → R(δ1) �δ P
1 → Drig �δ P

1 → R(δ2) �δ P
1 → 0.

15Actually, more is true but will not be needed in the sequel: D is of finite height
if and only if D ∈ S cris

∗ , where S cris
∗ is defined in no 3.3.1.

16That is, de Rham with Hodge-Tate weights equal to 0.
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Actually, once we know that η is locally constant, the arguments of [21, 28]
(where the case η = 1 is treated) go through without any change.

Using the description of the Jordan-Hölder components of R(δ1) �δ P
1

(cf. [21]), we deduce (lemma 3.21) the existence of a morphism with finite
dimensional kernel Ban(δ1, ηδ2) → Πan, where Ban(δ1, ηδ2) is the locally
analytic parabolic induction of the character ηδ2⊗ ε−1δ1. Finally, using uni-
versal completions, we prove that the morphism Ban(δ1, ηδ2) → Πan induces
a nonzero morphism Πδ(D

′) → Π for some G-compatible pair (D′, δ), where
D′ is a trianguline (ϕ,Γ)-module having a triangulation

0 → R(δ1) → D′
rig → R(ηδ2) → 0.

This is the most technical part of the proof and uses results from [18, 21, 5]
(and [48] suitably extended for p = 2). Since D and D′ are irreducible, the
representations Πδ(D

′) and Π are admissible and topologically irreducible,
hence the morphism Πδ(D

′) → Π must be an isomorphism. Using parts
(iii) and (iv) of proposition 3.3, we deduce that D′ ∼= D. In particular
detDrig = detD′

rig, which yields δ1δ2 = δ1δ2η, hence η = 1, and finishes the
proof in the trianguline case.

3.2.2. The case D+ = { 0} . Let us assume now that D ∈ ΦΓet(E ) is
2-dimensional and satisfies D+ = {0} (then D is automatically absolutely
irreducible). For each α ∈ O× let

C α = (1− αϕ)Dψ=α.

If D ∈ MF (χ−1) for some character χ : Q×
p → O×, then setting Π̌ =

ΠχŠ 1 (Ď) we have Π̌∗ ⊂ D �χ P1 (proposition 3.3), and there is a canonical
isomorphism of O[[Γ]][1/p]-modules [23, rem. V.14(ii)]

(11) ResZ×
p
((Π̌∗)

�
p 0
0 1

�
=αŠ 1

) ∼= C α.

Suppose now that D ∈ MF (δ−1) and let η = δ−1
D δ. Unravelling the

isomorphism (11) for χ = δD and χ = δ, we obtain the following key fact

Proposition 3.6. For al l α ∈ O× we have mη(C α) = C αη(p).

Proof. If χ ∈ {δD, δ}, let wχ be the restriction to Dψ=0 = D �χ Z×
p of the

action of w = ( 0 1
1 0 ) on ΠχŠ 1 (Ď)∗ ⊂ D�χP

1. Proposition V.12 of [23] shows

that wχ(C α) = C
1

αχ( p) for all α ∈ O×. On the other hand, remark II.1.3 of
[20] and part b) of proposition 3.1 yield wχ = w∗ ◦mχ and
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wδD ◦ wδ = w∗ ◦mδD ◦ w∗ ◦mδ = mδŠ 1
D

◦ w∗ ◦ w∗ ◦mδ = mδŠ 1
D δ = mη,

as w∗ ◦ w∗ = (w ◦ w)∗ = id. The result follows.

In view of proposition 3.4, theorem 3.5, in the case D+ = 0, is equivalent
to the following statement.

Proposition 3.7. We have η = 1.

Proof. Let μ(Qp) be the set of roots of unity in Qp, let

T̂ 0(L) = Homcont(Q
×
p /μ(Qp), 1 + mL)

be the set of continuous characters χ : Q×
p → 1 + mL trivial on μ(Qp), and

let

H = {χ ∈ T̂ 0(L)|mχ(C
α) = C αχ(p) ∀α ∈ 1 + mL}.

Proposition 3.31 below shows that H is a Zariski closed subgroup of T̂ 0(L)
and it follows from corollary 3.35 that H is either trivial or it contains
a nontrivial character of finite order (this may require replacing L by a
finite extension, which we are allowed to do). We haven’t used so far the
hypothesis D+ = {0}, but only the fact that D is absolutely irreducible of
dimension ≥ 2. When D+ = {0}, we prove (corollary 3.26) that H cannot
contain nontrivial locally constant characters. We conclude that H = {1},
which implies that η is of finite order (since any power of η which belongs to
T̂ 0(L) actually belongs to H by proposition 3.6). We conclude that η = 1
using again corollary 3.26.

Remark 3.8. Assume that the Sen operator on D is not scalar17. Propo-
sition 3.16 shows that η is locally constant, and proposition 3.6 and corol-
lary 3.26 yield directly the desired result η = 1. The key proposition 3.16
does not work if the Sen operator is scalar, which explains the more indirect
approach presented above.

3.2.3. Consequences of theorem 3.5. Before embarking on the proof
of theorem 3.5, we give a certain number of consequences of theorems 1.4
and 3.5.

If D ∈ ΦΓet(E ), we let D
ss
be the semi-simplification of D0 ⊗O k, where

D0 is any OE -lattice in D which is stable under ϕ and Γ.

17By Sen’s theorem, this is equivalent to saying that inertia does not have finite
image on the Galois representation associated to D.



The p-adic local Langlands correspondence 29

The functor Π �→ V(Π) has integral and torsion versions, and if Θ is
an open, bounded and G-invariant lattice in Π ∈ RepL(G), then V(Θ) =
lim←−n

V(Θ/�n) and V(Θ)/�n ∼= V(Θ/�n) for all n ≥ 1. The following
result follows from [20, th. 0.10] (see the introduction for the definition of
π{χ1, χ2}).
Lemma 3.9. If π is either supersingular or π{χ1, χ2} for some smooth
characters χ1, χ2 : Q×

p → k×, then dimk V(π) = 2. Moreover, if π is an
irreducible subrepresentation of π{χ1, χ2}, then dimk V(π) ≤ 1.

We will also need to following compatibility between the p-adic and
mod p Langlands correspondences. This was first proved (in a slightly differ-
ent form) in [4]. We will use the following version, taken from [23, prop. III.55,
rem. III.56].

Proposition 3.10. If D ∈ ΦΓet(E ) is 2-dimensional and if δ = δD, there is
an isomorphism Πδ(D)

ss ∼= Πδ(D
ss
) and (possibly after replacing L with its

quadratic unramified extension) this representation is either absolutely irre-
ducible supersingular or isomorphic to π{χ1, χ2} for some smooth characters
χ1, χ2 : Q×

p → k×.

Proposition 3.11. Let D = D(Π) with Π ∈ RepL(δ) absolutely irreducible.
Then dimE D ≤ 2 and D is absolutely irreducible. Moreover, dimD = 2 if
and only if Π is non-ordinary.

Proof. The functor D being exact, we have D
ss ∼= D(Π

ss
). Combined with

theorem 1.4 and lemma 3.9, this yields dimD ≤ 2.
Next, if Π is ordinary, then Π

ss
is a subquotient of a smooth parabolic

induction and using lemma 3.9 again we conclude that dimD ≤ 1. In par-
ticular, D is absolutely irreducible. If Π is not ordinary, we deduce from
[23, cor. III.47] and the first paragraph that D is absolutely irreducible and
2-dimensional. The result follows.

Corollary 3.12. If Π ∈ RepL(δ) is absolutely irreducible non-ordinary, then
δ = δD (Π). Thus detV(Π) = εδ.

Proof. This follows directly from proposition 3.11 and theorem 3.5.

Theorem 3.13. Let D = D(Π) with Π ∈ RepL(δ) absolutely irreducible.
The fol lowing assertions are equivalent

(i) Π is non-ordinary.
(ii) dimE D = 2.
(iii) After possibly replacing L by its quadratic unramified extension, Π

ss

is absolutely irreducible supersingular or isomorphic to some π{χ1, χ2}.
If these assertions hold, there is a canonical isomorphism Π ∼= Πδ(Ď).



30 Pierre Colmez et al.

Proof. (i) and (ii) are equivalent by proposition 3.11. Suppose that (iii)
holds. Then D

ss ∼= D(Π
ss
) is 2-dimensional by lemma 3.9 and so dimD = 2,

that is (ii) holds. Finally, suppose that (i) holds. Then [23, cor. III.47] yields
a canonical isomorphism Π ∼= Πδ(Ď) and we conclude that (iii) holds using
proposition 3.10.

Theorem 3.14. Let Π1,Π2 be absolutely irreducible, non-ordinary.

(i) If V(Π1) ∼= V(Π2), then Π1
∼= Π2.

(ii) We have Homcont
L[P ](Π1,Π2) = Homcont

L[G](Π1,Π2), where P is the mira-
bolic subgroup of G.

Proof. If V(Π1) ∼= V(Π2) = V , corollary 3.12 shows that Π1 and Π2 have
the same central character δ and theorem 3.13 yields Π1

∼= Π2
∼= Πδ(D(V̌ )).

Let f : Π1 → Π2 be a P -equivariant linear continuous map and let
Dj = D(Πj). Since the functor D uses only the restriction to P , f induces
a morphism D(f) : D2 → D1 in ΦΓet(E ). Since D1 and D2 are absolutely
irreducible (proposition 3.11), D(f) is either 0 or an isomorphism. If D(f) is
an isomorphism, δ1 = δ2 by part (i), and we conclude that f is G-equivariant
using the following diagram, in which the vertical maps are the isomorphisms
given by theorem 3.13 and the map Πδ1 (Ď1) → Πδ1 (Ď2) is G-equivariant
since induced by functoriality from the transpose of D(f)

Π1
f

∼=

Π2

∼=

Πδ1 (Ď1)
D (f � )

Πδ1 (Ď2).

The case D(f) = 0 is slightly trickier, since we can no longer use part (i)
of the theorem to deduce that Π1 and Π2 have the same central character. We
will prove that f = 0. Let Θj be the unit ball in Πj and let Xj = ResZp

(Θd
j ),

where we use the inclusions Π∗
j ⊂ Dj �δŠ 1

j
P1 (proposition 3.3). It follows

from [23, cor. III.25] that the restriction of ResQp
: Dj �δŠ 1

j
P1 → Dj �δŠ 1

j
Qp

to Π∗
j induces a P -equivariant isomorphism of topological vector spaces Π∗

j
∼=

(lim←−ψ
Xj)⊗ L. We have a commutative diagram

Π∗
2 Π∗

1

(lim←−ψ
X2)⊗ L (lim←−ψ

X1)⊗ L
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in which the top horizontal map is the transpose f∗ of f , the vertical maps
are the isomorphisms explained above and the horizontal map on the bottom
is induced byD(f) = 0, and thus it is the zero map. We conclude that f∗ = 0
and thus f = 0, which finishes the proof of theorem 1.8.

The remaining sections will be devoted to the proof of theorem 3.5 in the
case D trianguline (see proposition 3.24), and to the proof of the statements
(namely proposition 3.31 and corollaries 3.26 and 3.35) that were used in the
proof of proposition 3.7 which, as we remarked, is equivalent to theorem 3.5
in the case D+ = 0.

3.3. Trianguline representations

3.3.1. Preliminaries. If δ : Q×
p → L× is a continuous character (not

necessarily unitary), let R(δ) be the (ϕ,Γ)-module obtained by twisting the
action of ϕ and Γ on R by δ. It has a canonical basis e = 1 ⊗ δ for which
ϕ(e) = δ(p)e and σa(e) = δ(a)e for a ∈ Z×

p , where σa ∈ Γ satisfies σa(ζ) = ζa

for all ζ ∈ μp� , so that ε(σa) = a. Let R+ be the ring of analytic functions
on the open unit disk, so that R+ = R ∩ L[[T ]]. We define R+(δ) as the
R+-submodule of R(δ) generated by e. We let κ(δ) be the derivative of δ
at 1 or, equivalently (if δ is unitary), the generalized Hodge–Tate weight of
the Galois character corresponding to δ by class field theory.

By18 [21, prop. 0.2], Ext1(R(δ2),R(δ1)) has dimension 1 when δ1δ
−1
2

is not of the form x−i or εxi for some i ≥ 0, and dimension 2 in the re-
maining cases. Moreover, if Ext1(R(δ2),R(δ1)) is 2-dimensional, then the
associated projective space is naturally isomorphic to P1(L). Let S be the
set of triples (δ1, δ2,L ), where δ1, δ2 : Q×

p → L× are continuous charac-

ters and L ∈ Proj(Ext1(R(δ2),R(δ1))) with the convention L = ∞, if
Ext1(R(δ2),R(δ1)) is 1-dimensional. Each s ∈ S gives rise to an extension

0 → R(δ1) → Δ(s) → R(δ2) → 0,

classified up to isomorphism by L .
Let S∗ be the subset of S consisting of those s = (δ1, δ2,L ) for which

vp(δ1(p)) + vp(δ2(p)) = 0 and vp(δ1(p)) > 0. For each s ∈ S∗ let

u(s) = vp(δ1(p)), κ(s) = κ(δ1)− κ(δ2).

Let S cris
∗ (resp. S st

∗ ) be the set of s ∈ S∗ for which κ(s) ∈ N∗, u(s) < κ(s)
and L = ∞ (resp. L �= ∞). Let S ng

∗ be the set of s ∈ S∗ for which
κ(s) /∈ N∗ and finally let

18Contrary to [17], all results of [21] are proved for all primes p.
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Sirr = S cris
∗

�
S st

∗
�

S ng
∗ .

We say that D ∈ ΦΓet(E ) is trianguline (of rank 2) if Drig is an extension of

two (ϕ,Γ)-modules of rank 1 over R. These are described by the following

result ([21, prop. 0.3] or [17, th. 0.5]).

Proposition 3.15. a) For any s ∈ Sirr there is a unique D(s) ∈ ΦΓet(E )

such that Δ(s) = D(s)rig, and D(s) is absolutely irreducible. Moreover, if

D ∈ ΦΓet(E ) is trianguline and absolutely irreducible, there exists s ∈ Sirr

such that D ∼= D(s).

b) If s = (δ1, δ2,L ) and s′ = (δ′1, δ
′
2,L

′) are elements of Sirr, then

D(s) ∼= D(s′) if and only if s, s′ ∈ S cris
∗ and δ′1 = xκ(s)δ2, δ′2 = x−κ(s)δ1.

3.3.2. Infinitesimal study of the module Drig �� P
1. In this § we let

D be any object of MF (δ−1) for some unitary character δ.

Recall (see section 2.5 of [30] for a summary) that Sen’s theory associates

to D a finite free L⊗Qp
Qp(μp� )-module DSen endowed with a Sen operator

ΘSen, whose eigenvalues are the generalized Hodge-Tate weights of D.

Proposition 3.16. If D ∈ MF (δ−1) is absolutely irreducible, 2-dimen-

sional and if ΘSen is not a scalar operator on DSen, then δδ−1
D is local ly

constant.

Proof. By [23, chap. VI], the G-equivariant sheaf U �→ D �δ U induces a

G-equivariant sheaf U �→ Drig �δ U on P1(Qp). We let Drig �δ P
1 be the

space of global sections of this sheaf. This is naturally an LF space and

G acts continuously on it. Moreover, this action extends to a structure of

topological D(GL2(Zp))-module on Drig �δ P
1, where D(GL2(Zp)) is the

Fréchet-Stein algebra [58] of L-valued distributions on GL2(Zp). In particu-

lar, the enveloping algebra of gl2 = Lie(G) acts on Drig �δ P
1.

Consider the Casimir element

C = u+u− + u−u+ +
1

2
h2 ∈ U(gl2),

where h = ( 1 0
0 −1 ), u

+ = ( 0 1
0 0 ) and u− = ( 0 0

1 0 ). The action of C on Drig�δP
1

preserves Drig = Drig �δ Zp, viewed as a sub-module of Drig �δ P
1 via the

extension by 0. By theorem 3.1 and remark 3.2 of [29] the operator C acts

by a scalar c on Drig and we have an equality of operators on DSen

(12) (2ΘSen − (1 + κ(δ)))2 = 1 + 2c.
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Let a and b be the generalized Hodge-Tate weights of D. By Cayley-
Hamilton we have (ΘSen − a)(ΘSen − b) = 0 as endomorphisms of DSen.
Combining this relation with (12) yields

4(a+ b− 1− κ(δ))ΘSen + (1 + κ(δ))2 − 4ab = 1 + 2c.

Since ΘSen is not scalar, the previous relation forces a + b − 1 = κ(δ) and,
as a+ b− 1 = κ(δD), this gives κ(δδ

−1
D ) = 0. The result follows.

Remark 3.17. If D is trianguline, 2-dimensional and irreducible, then ΘSen

is not scalar, see proposition 4.6 of [17].

3.3.3. Dévissage of Drig �� P1. If η1, η2 : Q×
p → L× are continuous

characters, let

Ban(η1, η2) = (IndGBη2 ⊗ ε−1η1)
an

be the locally analytic parabolic induction of the character η2 ⊗ ε−1η1. The
recipe giving rise to the sheaf U �→ D �δ U for D ∈ ΦΓet(E ) can be used
[28, § 3.1] to create a G-equivariant sheaf U �→ R(η1)�δ U on P1, attached
to the pair (R(η1), δ). We will only be interested in the space R(η1) �δ P

1

of its global sections, which is described by the following proposition, whose
proof is easily deduced from remark 3.7 of [28]. Let

R+(η1)�δP
1 = {z ∈ R(η1)�δP

1, ResZp
z ∈ R+(η1), ResZp

w ·z ∈ R+(η1)}.

Proposition 3.18. If ε−1η1η2 = δ for some continuous characters η1, η2, δ,
then there is an exact sequence of topological G-modules

0 → Ban(η2, η1)
∗ ⊗ δ → R(η1) �δ P

1 → Ban(η1, η2) → 0

and a G-equivariant isomorphism Ban(η2, η1)
∗ ⊗ δ ∼= R+(η1)�δ P

1 of topo-
logical vector spaces.

From now on we suppose that D = D(s) ∈ MF (δ−1) for some point
s = (δ1, δ2,L ) ∈ Sirr and some unitary character δ : Q×

p → O∗
L, and we let

η = δδ−1
D . By proposition 3.3 we have Ď ∈ MF (δ) and we let Π̌ = ΠδŠ 1 (Ď).

Since dimD = 2, there is a natural isomorphism Ď ∼= D ⊗ δ−1
D . Combining

these observations with part (i) of proposition 3.3 and with corollary VI.12
of [23], we obtain the following result.

Lemma 3.19. We have D ∈ MF (ηδ−1
D ) and there is a natural isomorphism

Π̌ ∼= ΠδDηŠ 1 (D)⊗ δ−1
D as wel l as an exact sequence of topological G-modules

0 → (Π̌an)∗ → Drig �δ P
1 → Πan → 0.
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Lemma 3.20. There is an exact sequence of topological G-modules

0 → R(δ1) �δ P
1 → Drig �δ P

1 → R(δ2) �δ P
1 → 0.

Proof. Since κ(δ) = κ(δD) by remark 3.17, the desired result is proved in the
same way as corollary 3.6 of [28]. For the reader’s convenience, we sketch the
argument. Let a, b be the Hodge-Tate weights of D. Extension by 0 allows
to view Drig = Drig �δ Zp as a subspace of Drig �δ P

1 and any element of
Drig �δ P

1 can be written as z1 + w · z2 with z1, z2 ∈ Drig. The equality
κ(δ) = κ(δD) combined with theorem 3.1 in [29] yields

u+(z1) = tz1, u+(w ·z2) = −w · (∇− a)(∇− b)z2
t

, where t = log(1 + T ).

We deduce that X := (Drig �δ P
1)u

+ =0 is isomorphic as an L-vector space
to the space of solutions of the equation (∇ − a)(∇ − b)z = 0 on Drig.
Proposition 2.1 of [28] shows that X is finite dimensional and lemma 2.6 of
loc.cit implies that all elements of X are invariant under the action of the
upper unipotent subgroup U of G. In particular, if e1 is a basis of R(δ1)
which is an eigenvector of ϕ and Γ, then (0, e1) ∈ X is U -invariant. Then
the arguments in § 3.2 of [28] go through by replacing δD by δ. The result
follows.

Lemma 3.21. There is a morphism Ban(δ1, ηδ2) → Πan with a finite di-
mensional kernel.

Proof. We have inclusions R+(δ1) �δ P
1 ⊂ Drig �δ P

1 (lemma 3.20) and
(Π̌an)∗ ⊂ Drig �δ P1 (lemma 3.19). It follows from [23, cor. VI.14] that
R+(δ1) �δ P

1 ⊂ (Π̌an)∗, hence there is a morphism

(R(δ1) �δ P
1)/(R+(δ1) �δ P

1) → (Drig �δ P
1)/(Π̌an)∗.

The left hand-side is isomorphic to Ban(δ1, ηδ2) by proposition 3.18 and
the right hand-side is isomorphic to Πan by lemma 3.19. Consequently, we
obtain a morphism Ban(δ1, ηδ2) → Πan, whose kernel is a closed subspace of
Ban(δ1, ηδ2), thus a space of compact type. On the other hand, the kernel is
isomorphic to the quotient of (Π̌an)∗∩ (R(δ1)�δ P

1) by the closed subspace
R+(δ1) �δ P

1. Let σ : Drig → R(δ2) be the natural projection. Then

(Π̌an)∗ ∩ (R(δ1) �δ P
1) = {z ∈ (Π̌an)∗|σ(ResZp

(z)) = σ(ResZp
(wz)) = 0}

is closed in the Fréchet space (Π̌an)∗, thus it is itself a Fréchet space. Since
a Fréchet space which is also a space of compact type is finite dimensional,
the result follows.
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Remark 3.22. Combining lemmas 3.19 and 3.21, we also obtain the exis-
tence of a morphism Ban(δ1, η

−1δ2) → ΠδDηŠ 1 (D)an with a finite dimensional
kernel.

3.3.4. Universal unitary completions and completion of the proof.
The next theorem requires some preliminaries. A point s = (δ1, δ2,L ) ∈ Sirr

is called
• exceptional if κ(s) ∈ N∗ and δ1 = xκ(s)δ2 (in particular, s ∈ S cris

∗ ).
• special if κ(s) ∈ N∗ and δ1 = xκ(s)−1εδ2 (this includes s ∈ S st

∗ ).
If s is special, then setting W (δ1, δ2) = Symκ(s)−1(L2)⊗L δ2 there is, by

[21, th. 2.7, rem. 2.11], a natural isomorphism

Ext1G(W (δ1, δ2), B
an(δ1, δ2)/W (δ1, δ2)) ∼= Ext1(R(δ2),R(δ1)).

The extension D(s)rig of R(δ2) by R(δ1) associated to s gives therefore rise
to an extension EL of W (δ1, δ2) by Ban(δ1, δ2)/W (δ1, δ2) (these extensions
were introduced and studied by Breuil [9, 11]).

If s = (δ1, δ2,L ) ∈ Sirr we have D(s) ∈ MF (δ−1
D(s)) by proposition 3.4.

We write Π(s) instead of ΠδD( s) (D(s)). Propositions 3.15 and 3.3(iv) imply
that Π(s) is in RepL(δD(s)) and is absolutely irreducible.

If π is a representation of G on a locally convex L-vector space, we let

π be the universal unitary completion of π (if it exists).

Theorem 3.23. If s = (δ1, δ2,L ) ∈ Sirr then the fol lowing hold:

a) If s ∈ S cris
∗ is not special, then19 Π(s) = ̂Balg(δ1, δ2) = ̂Ban(δ1, δ2).

b) If s ∈ S ng
∗ , then Π(s) = ̂Ban(δ1, δ2).

c) If s is special (which includes the case s ∈ S st
∗ ), then Π(s) = �EL .

Proof. Assume first that s is not exceptional. Let B(s) be the space of
functions φ : Qp → L of class C u(s), such that x �→ (δ1δ

−1
2 ε−1)(x)φ(1/x)

extends to a function of class C u(s). By results of Berger, Breuil and Emer-

ton20 one can express ̂Balg(δ1, δ2), ̂Ban(δ1, δ2) and �EL (according to whether
s ∈ S cris

∗ ,S ng
∗ or s special) as a quotient Πaut(s) of B(s). Theorem IV.4.12

of [20] (which builds on [5], [18], [17]) shows that D(s) ∈ MF (δ−1
D(s)) and

that Πaut(s) = Π(s), which finishes the proof in this case.
It remains to deal with the exceptional case21. Let Π = Π(s). The de-

scription of Π(s)an given by [21, prop. 4.11] shows that there is an injection

19Balg(δ1, δ2) is the space of SL2(Qp) locally algebraic vectors in Ban(δ1, δ2).
20See [5, th. 4.3.1], [32, prop. 2.5], [9, cor. 3.2.3, 3.3.4].
21 This problem is solved in [48] for p > 2.
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Balg(δ1, δ2) → Π. If X = ̂Balg(δ1, δ2), we obtain a morphism X → Π and

an injection Balg(δ1, δ2) → X. In particular X �= 0, and then the second

paragraph of the proof of prop. 2.10 in [52] shows that we can find a non-

exceptional point s′ ∈ S cris
∗ and lattices Θ1,Θ2 in Balg(δ1, δ2) and Π(s′)alg,

both finitely generated as O[G]-modules and such that Θ1/� ∼= Θ2/�.

Since Θ1,Θ2 are finitely generated over O[G], their p-adic completions

are open, bounded, G-stable lattices in X and Π(s′) = Π̂(s′)alg, respectively.
As s′ is not exceptional, we know (by the first paragraph) that Θ2/� is

admissible, of finite length, thus X is admissible, of finite length as Banach

representation and X
ss ∼= Π(s′)

ss
. In particular, the image of the morphism

X → Π is closed [57]. Since Π is irreducible we obtain an exact sequence

0 → K → X → Π → 0 in BanadmG (L). It follows from [51, lem. 5.5] that

this induces an exact sequence 0 → K
ss → X

ss → Π
ss → 0. Thus we

have a surjection Π(s′)
ss → Π(s)

ss
. Compatibility of p-adic and mod p local

Langlands ([4] or proposition 3.10) implies that this surjection must be an

isomorphism, which in turn shows that K
ss
= 0, hence K = 0. We conclude

that X ∼= Π and we are done.

Proposition 3.24. If D ∈ Sirr and D ∈ MF (δ−1) for some unitary char-

acter δ, then δ = δD.

Proof. Write s = (δ1, δ2,L ) ∈ Sirr and δ = δDη (note that δD = ε−1δ1δ2).

We will prove that η = 1.

We start by proving that η = η−1. Suppose that this is not the case and

let s′ = (δ1, ηδ2,L ) and s′′ = (δ1, η
−1δ2,L ). Since η is locally constant and

unitary, we have s′, s′′ ∈ Sirr and s, s′, s′′ are pairwise distinct. At least one

of s′, s′′ is not special, and replacing22 η by η−1 we may assume that s′ has
this property. Lemma 3.21 gives a nonzero morphism Ban(δ1, ηδ2) → Π. Ap-

plying theorem 3.23 (to this morphism or to its restriction to Balg(δ1, ηδ2))

yields a nonzero morphism Π(s′) → Π. This must be an isomorphism since

both the source and target are topologically irreducible and admissible by

proposition 3.3. Applying the functor Π �→ V(Π) and using proposition 3.3

again yields D(s) ∼= D(s′), contradicting proposition 3.15. Thus η = η−1,

and the proof also shows that if s′ is not special, then η = 1.

Assume that s′ is special. Since η2 = 1, we have ΠδDηŠ 1 (D) = Π and the

exact sequence in proposition 3.19 becomes

0 → (Πan)∗ ⊗ δD → Drig �δ P
1 → Πan → 0.

22This uses lemma 3.19.
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Proposition 3.18 also gives exact sequences

0 → Ban(δ2, ηδ1)
∗ ⊗ δD → R(δ1) �δ P

1 → Ban(δ1, ηδ2) → 0,

0 → Ban(δ1, ηδ2)
∗ ⊗ δD → R(δ2) �δ P

1 → Ban(δ2, ηδ1) → 0.

We are now exactly in the context of the proof of prop. 4.11, part ii)
of [21], which shows that Πan contains an extension EL � of W (δ1, ηδ2)
by Ban(δ1, ηδ2)/W (δ1, ηδ2). This extension is necessarily non split since
Πan does not contain any finite dimensional G-invariant subspace. Letting
s′′ = (δ1, ηδ2,L ′), the inclusion EL � → Πan induces via theorem 3.23 a
nonzero morphism Π(s′′) → Π. Arguing as in the previous paragraph, we
obtain D(s′′) ∼= D(s) and we conclude using proposition 3.15.

3.4. Representations of infinite height

3.4.1. (ϕ,Γ)-modules of infinite height. In this § we fix a character
δ : Q×

p → O× and an absolutely irreducible D ∈ MF (δ−1) such that

D+ = {0}. Let Π = Πδ(D) and Π̌ = ΠδŠ 1 (Ď). By proposition 3.3 we have
an inclusion Π̌∗ ⊂ D�δ P

1. We will use several times the inclusion Dψ=α ⊂
ResZp

(Π̌∗) for all α ∈ O×, see the discussion in remark V.14 of [23]. Recall
that C α = (1− αϕ)Dψ=α.

Proposition 3.25. a) Resa+pnZp
: Π̌∗ → D is injective for al l a ∈ Zp and

n ≥ 0.
b) C α ∩ C β = {0} for al l distinct α, β ∈ O×.

Proof. a) Resa+pnZp
(z) = 0 is equivalent to ResZp

(
�
pŠ n 0
0 1

��
1 −a
0 1

�
z) = 0, so

it suffices to prove that ResZp
: Π̌∗ → D is injective. Let D0 be a stable

lattice in D and let Π0 = Πδ(D0) and Π̌0 = ΠδŠ 1 (Ď0). Then Π0 and Π̌0 are
open, bounded and G-invariant lattices in Π and Π̌. Suppose that z ∈ Π̌∗

satisfies ResZp
(z) = 0. Multiplying z by a power of p, we may assume that

z ∈ Π̌∗
0. If w =

�
0 1
1 0

�
, then

�
pn 0
0 1

�
wz ∈ D0 ∩ Π̌∗

0 for all n ≥ 1, thus

ϕn(wz) = ResZp
(
�
pn 0
0 1

�
wz) ∈ ResZp

(Π̌∗
0).

Since ResZp
(Π̌∗

0) is compact (because Π̌∗
0 is compact and ResZp

is continuous),
we deduce that wz ∈ D+

0 = {0} and so z = 0.
b) Let x ∈ Dψ=α and y ∈ Dψ=β be such that (1−αϕ)x = (1−βϕ)y. Then

x−y = ϕ(αx−βy), so Res1+pZp
(x−y) = 0. Since Dψ=α, Dψ=β ⊂ ResZp

(Π̌∗),
we can write x− y = ResZp

(z) for some z ∈ Π̌∗. Then Res1+pZp
(z) = 0, and

part a) shows that z = 0, thus x = y. But then αx = βy and so x = y = 0.
The result follows.



38 Pierre Colmez et al.

Corollary 3.26. Let η : Q×
p → O× be a local ly constant character and let

α, β ∈ O×. If mη(C α) ∩ C β �= {0}, then η|Z×
p
= 1 and α = β.

Proof. Suppose that z ∈ C α and y ∈ C β are nonzero and satisfy mη(z) = y.
Choose z̃, ỹ ∈ Π̌∗ such that z = ResZ×

p
(z̃) and y = ResZ×

p
(ỹ) (this uses

the fact that Dψ=α, Dψ=β ⊂ ResZp
(Π̌∗)). The hypothesis and part e) of

proposition 3.1 yield the existence of n ≥ 1 such that

mη =
�

i∈(Z/pnZ)×

η(i)Resi+pnZp
.

For i ∈ (Z/pnZ)×, applying Resi+pnZp
to the equality mη(z) = y (and

using part d) of proposition 3.1) gives

η(i)Resi+pnZp
(z̃) = Resi+pnZp

(ỹ),

hence (proposition 3.25) η(i)z̃ = ỹ. Since this holds for all i ∈ (Z/pnZ)× and
since z̃ �= 0, we infer that η|Z×

p
= 1. But then mη is the identity map and so

the hypothesis becomes C α ∩C β �= {0}. Proposition 3.25 shows that α = β
and finishes the proof.

3.4.2. A family of unramified twists of D. In this § we let V be any
absolutely irreducible L-representation of GQp

of dimension ≥ 2 and we let
V0 be a GQp

-stable O-lattice in V . Let S = O[[X]] and let δnr : GQp
→ S×

be the unramified character sending a geometric Frobenius to 1 +X. Then
V0,un = S ⊗O V0 becomes a GQp

-module for the diagonal action.
Let D0 (resp. D0,un) be the étale (ϕ,Γ)-module associated to V0 (resp.

V0,un) by Fontaine’s [41] equivalence of categories and its version [25] for
families. Concretely, D0,un = OE ,S ⊗OE D0, where

23

OE ,S = S 
⊗OOE = {
�

n∈Z
anT

n, an ∈ S, lim
n→−∞

an = 0},

γ ∈ Γ and ϕ acting by γ ⊗ γ and ϕ(λ⊗ z) = ((1 +X)ϕ(λ))⊗ ϕ(z).
For α ∈ 1 + mL, there is a surjective specialization map spα : S → O,

sending X to α− 1, with kernel ℘α = (X − α+ 1). The induced map

spα : OE ,S → OE , sα(
�

n∈Z
anT

n) =
�

n∈Z
an(α− 1)Tn

23The limit is taken for the mS = (�,X)-adic topology.
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gives rise to a specialization map spα : D0,un → D0, which in turn in-
duces an isomorphism of (ϕ,Γ)-modules D0,un/℘α

∼= D0⊗αvp . In particular,

spα : D0,un → D0 induces a Γ-equivariant morphism spα : Dψ=1
0,un → Dψ=α

0 .
Let Dun = L⊗O D0,un and D = L⊗O D0.

Proposition 3.27. For al l α ∈ 1 + mL the map spα : Dψ=1
un → Dψ=α is

surjective.

Proof. Let Dn = D0,un/℘
n
α. It suffices to prove that the cokernel of the

natural map Dψ=1
0,un → Dψ=1

1 is O-torsion. The snake lemma applied to the
sequence 0 → Dn−1 → Dn → D1 → 0 mapped to itself by ψ − 1 yields an
exact sequence of O-modules

0 → Dψ=1
n−1 → Dψ=1

n → Dψ=1
1 → Dn−1

ψ − 1
→ Dn

ψ − 1
→ D1

ψ − 1
→ 0.

All modules appearing in the exact sequence are compact [19, prop. II.5.5,

II.5.6] and we have a natural isomorphism lim←−n
Dψ=1

n = Dψ=1
0,un (as D0,un =

lim←−n
Dn). Passing to the limit we obtain therefore an exact sequence

0 → Dψ=1
0,un → Dψ=1

0,un → Dψ=1
1 → M → M → D1

ψ − 1
→ 0,

where M = lim←−n
Dn

ψ−1 . It is thus enough to prove that M is a torsion O-
module.

Let W̌n be the Galois representation associated to Ďn, namely the Cartier
dual of Wn := V0,un/℘

n
α. It follows from [19, remarque II.5.10] that there is

an isomorphism24

Dn

ψ − 1
∼= [(Qp/Zp ⊗Zp

Ďn)
ϕ=1]∨ = [(Qp/Zp ⊗Zp

W̌n)
H ]∨,

hence it suffices to check that (Qp/Zp ⊗Zp
W̌n)

H are O-torsion modules of
bounded exponent (as n varies).

Let H = Gal(Qp/Qab
p ). Since V̌0 is absolutely irreducible of dimension

≥ 2, there is N ≥ 1 such that pN kills (Qp/Zp⊗Zp
V̌0)

H . As V0,un
∼= S⊗O V0,

with H acting trivially on S, and since S/℘n
α is a finite free O-module, we

have

(Qp/Zp ⊗Zp
W̌n)

H ⊂ (Qp/Zp ⊗Zp
W̌n)

H = (S/℘n
α ⊗O (L/O ⊗O V̌0))

H

= S/℘n
α ⊗O (L/O ⊗O V̌0)

H

and the last module is killed by pN . The result follows.

24Here H = Ker(ε) = Gal(Qp/Qp(μp� )) and X∨ is the Pontryagin dual of X.
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3.4.3. Analytic variation in the universal family. We recall that
there is [19, prop. I.2.3] a ϕ and Γ-invariant perfect pairing { , } : Ď×D → L,
under which ϕ and ψ are adjoints. Recall also that, for α ∈ O×, we denote
C α = (1 − αϕ)Dψ=α. The following result follows from the proof of [19,
lemme VI.1.1].

Lemma 3.28. C α is the orthogonal (for { , }) of Ďψ=1/α inside Dψ=0.

Let q = p if p > 2 and q = 4 if p = 2. Fix a topological generator γ of
1 + qZp and define a map � : Z×

p → Zp by

� : Z×
p
∼= μ(Qp)× (1 + qZp) → 1 + qZp = γZp ∼= Zp,

the second map being the natural projection and the last map sending γx

to x.

Lemma 3.29. For al l η ∈ T̂ 0(L) there is an equality of operators on D�Z×
p

mη =
�

n≥0

(η(γ)− 1)nm(�

n)

and m(�

n)
(D0 � Z×

p ) ⊂ D0 � Z×
p .

Proof. For all η ∈ T̂ 0(L) and x ∈ Z×
p we have

�

n≥0

(η(γ)− 1)n
�
�(x)

n

�
= η(γ)�(x) = η(γ�(x)) = η(x),

the last equality being a consequence of the fact that x−1 · γ�(x) ∈ μ(Qp).
Hence

η|Z×
p
=

�

n≥0

(η(γ)− 1)n
�
�

n

�
,

the series being uniformly convergent on Z×
p . This yields the first part. The

second part is a consequence of the fact that
�
�
n

�
(Z×

p ) ⊂ Zp.

We are now ready to prove a key technical ingredient in the proof of
theorem 3.5. We identify T̂ 0(L) and (1 + mL) × (1 + mL) via the map
η �→ (η(γ), η(p)).

Definition 3.30. A subset S of (1+mL)× (1+mL) is called Zariski closed
if it is defined by a system of equations of the form f(x− 1, y− 1) = 0, with
f ∈ O[[X,Y ]].
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Proposition 3.31. The set

H = {η ∈ T̂ 0(L)| mη(C
α) = C αη(p) ∀α ∈ 1 + mL}

is a Zariski closed subgroup of T̂ 0(L).

Proof. Since T̂ 0(L) → AutL(D
ψ=0), η �→ mη is a morphism of groups, H is

a subgroup of T̂ 0(L). To conclude, it suffices to check that

Hα = {η ∈ T̂ 0(L)|mη(C
α) ⊂ C αη(p)}

is Zariski closed for all α ∈ 1 + mL.

Let us fix α ∈ 1 + mL and denote

Cun = (1− ϕ)Dψ=1
0,un and Čun = (1− ϕ)Ďψ=1

0,un ,

where D0,un and Ď0,un were defined in no 3.4.2. If η ∈ T̂ 0(L), it follows from

proposition 3.27 that specializing induces surjections Cun ⊗O L → C α and

Čun ⊗O L → Č 1/αη(p). Since C αη(p) is the orthogonal of Č 1/αη(p) in Dψ=0

(lemma 3.28), it follows that

Hα = {η ∈ T̂ 0(L)| {sp1/αη(p)(ž),mη(spα(z))} = 0 ∀ž ∈ Čun, z ∈ Cun}.

Fix ž ∈ Čun and z ∈ Cun. We can write ž =
�

k≥0X
kžk with žk ∈ Ď0.

By definition

sp1/αη(p)(ž) =
�

k≥0

(
1

αη(p)
− 1)kžk.

Combining this relation and lemma 3.29, we obtain

{sp1/αη(p)(ž),mη(spα(z))} =
�

k,n≥0

(
1

αη(p)
−1)k(η(γ)−1)n{žk,m(�

n)
(spα(z))}

and the last expression is the evaluation at (η(γ)−1, η(p)−1) of an element

of O[[X,Y ]]. Thus Hα is a Zariski closed subset of (1+mL)
2, which finishes

the proof of proposition 3.31.

3.4.4. The Zariski closure of (an , bn )n � 1. We refer the reader to def-

inition 3.30 for the notion of Zariski closed subset of (1 + mL)× (1 + mL).



42 Pierre Colmez et al.

Proposition 3.32. Let a, b ∈ 1+mL. The Zariski closure of {(an, bn)|n ≥ 1}
is:

• A finite subgroup of μp� × μp� if log a = log b = 0.
• The set {(x, xs)|x ∈ 1 + mL} (respectively {(xs, x)|x ∈ 1 + mL}) if

log b = s log a (respectively log a = s log b), s ∈ Zp and (log a, log b) �= (0, 0).
• (1+mL)× (1+mL) if log a and log b are linearly independent over Qp.

Proof. The first two cases are immediate, so assume that log a and log b
are linearly independent over Qp. Suppose that f ∈ O[[X,Y ]] is such that
f(an−1, bn−1) = 0 for all n ≥ 1. We will prove that f = 0. We may assume
that b = as, with s ∈ O − Zp. For n ≥ 1 we have

vp

��
s

n

��
≥ −vp(n!) > − n

p− 1
,

hence xs =
�

n≥0

�
s
n

�
(x−1)n is well-defined for vp(x−1) > 1

p−1 and x �→ xs

is analytic in this ball, with values in 1+mL. Thus x �→ f(x, (1+x)s− 1) is
analytic on the ball vp(x) >

1
p−1 and 0 at an−1 for all n ≥ 1. Since log a �= 0,

it follows that f(x, (1 + x)s − 1) = 0 for all vp(x) > 1
p−1 , consequently

f(T, (1 + T )s − 1) = 0 in L[[T ]]. Proposition 3.33 below combined with the
formal Weierstrass preparation theorem yield f = 0, which is the desired
result.

Proposition 3.33. If s ∈ O − Zp, then (1 + T )s is transcendental over
Frac(E +).

Proof. Set f = (1 + T )s and K = Frac(E +). We will need the following
elementary result [31, prop. 7.3].

Lemma 3.34. (1 + T )s ∈ R+ if and only if s ∈ Zp.

We start with the case f ∈ K. Since a nonzero element of E + generates
the same ideal in E + as a nonzero polynomial, we have K ⊂ R, and so
f ∈ R ∩ L[[T ]] = R+ and the previous lemma leads to a contradiction if
s ∈ O − Zp.

Next, assume that f is algebraic over K and f /∈ K. Let P = Xn +
an−1X

n−1+ · · ·+a0 ∈ K[X] be its minimal polynomial over K, with n > 1.
Consider the differential operator ∂ = (1+ T ) d

dT and observe that ∂f = sf .
The equality ∂(P (f))− nsP (f) = 0 can also be written as

n−1�

k=0

(∂ak + s(k − n)ak)f
k = 0.
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By minimality of n we deduce that ∂ak + s(k − n)ak = 0 for all k < n, in
particular ∂(a0 · (1 + T )−sn) = 0, hence a0 = c · (1 + T )sn for some c ∈ L∗.
Thus (1+T )sn ∈ K and by the previous paragraph this gives sn ∈ Zp, which
combined with s ∈ O yields s ∈ Zp, a contradiction. The result follows.

The following result follows immediately from proposition 3.32.

Corollary 3.35. If μp ⊂ L, then any nontrivial Zariski closed subgroup of

T̂ 0(L) contains a nontrivial character of finite order.

Remark 3.36. The conclusion of proposition 3.32 fails if we work with
unbounded analytic functions instead of elements of L ⊗O O[[X,Y ]] when
defining the Zariski closure: if a, b ∈ 1 + mL satisfy (log a, log b) �= (0, 0),
then log b · log(1 +X)− log a · log(1 + Y ) vanishes at (an − 1, bn − 1) for all
n ≥ 1.
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[8] C. Breuil, Sur quelques représentations modulaires et p-adiques de
GL2(Qp). II, J. Inst. Math. Jussieu 2 (2003), 1–36.
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(2008), 213–258.
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[36] M. Emerton and V. Paškūnas, On the effaceability of certain δ-functors,
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Astérisque 330 (2010), 511–528.

[44] R. Liu, B. Xie and Y. Zhang, Locally analytic vectors of unitary prin-
cipal series of GL2(Qp), Annales Scientifiques de l’E.N.S. 45 (2012),
28–64.

[45] H. Matsumura, Commutative ring theory, Second edition. Cambridge
Studies in Advanced Mathematics 8, CUP, Cambridge (1989).

[46] J. C. McConnell and J. C. Robson, Noncommutative noetherian rings,
Wiley series in pure and applied mathematics (1987).
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