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The Selberg trace formula for compact hyperbolic curves

(I) Let us recall the setup and main results of the previous
lecture. We start with a cocompact lattice Γ in G such that
|tr(γ)| > 2 for all γ ∈ Γ K {±1}. This is equivalent to saying
that Γ has no nontrivial torsion elements except maybe −1
(exercise). For simplicity we assume that −1 /∈ Γ.

(II) Consider the compact hyperbolic curve X = Γ\H . We saw
that L2(X ) has an ON-basis consisting of eigenfunctions of
the hyperbolic Laplacian ∆. Order the eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ ...

We saw that each eigenvalue appears with finite multiplicity.
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The Selberg trace formula for compact hyperbolic curves
(I) We also proved a general ”abstract” trace formula for

compact quotients, which in our case becomes, for
f ∈ C∞c (G )∑
π∈Ĝ

m(π)tr(π(f )) =
∑
γ∈{Γ}

vol(Γγ\Gγ)

∫
Gγ\G

f (x−1γx)dx ,

where

L2(Γ\G ) =
⊕̂
π∈Ĝ

π⊕m(π)

is the GGPS decomposition, Gγ and Γγ are the centralizers
of γ in G and Γ, {Γ} is the set of Γ-conjugacy classes in Γ
and tr(π(f )) is the trace of the operator Tf on π.

(II) We will pick f ∈ Sph := C∞c (G//K ). Then Tf sends π into
πK , thus we can restrict to π ∈ Ĝ sph, where

Ĝ sph = {π ∈ Ĝ |πK 6= 0} = {πs | s ∈ iR+ ∪ (0, 1)}.
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The Selberg trace formula for compact hyperbolic curves
(I) We proved last time that m(πs) is the dimension of the

space of f ∈ C∞(X ) with ∆f = 1−s2

4 f . Thus if we write
λj = 1

4 + r2
j with rj ∈ R+ ∪ 1

2i (0, 1), then m(πs) is the
number of j for which rj = s

2i .

(II) Recall that Sph acts on the one-dimensional space πKs by a
character χπs : Sph→ C and we showed last time that

χπs (f ) = ĝ(
s

2i
), ϕ̂(x) :=

∫
R
ϕ(t)e ixtdt,

with

g(u) = HC (f )(u) = eu/2

∫
R
f (

(
eu/2 0

0 e−u/2

)(
1 x
0 1

)
)dx

=

∫
R
f (

(
eu/2 x

0 e−u/2

)
)dx

the Harish-Chandra (or Selberg) transform of f .
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The Selberg trace formula for compact hyperbolic curves
(I) Since Tf sends πs into πKs , which is a line, it is clear that

tr(πs(f )) = χπs (f ).

It follows that the spectral part of the abstract trace formula
is ∑

s

ĝ(
s

2i
)
∑
rj=

s
2i

1 =
∑
j

ĝ(rj).

(II) We also saw that sending f to g = HC (f ) yields an
isomorphism (of vector spaces) Sph ' C∞c (R)even and that
we have the ”Fourier inversion formula”

f (1) =
1

2π

∫ ∞
0

xĝ(x) tanh(πx)dx .

In particular the term corresponding to the class of 1 in the
geometric side of the trace formula is

vol(Γ\G )f (1) =
area(X )

2π

∫ ∞
0

xĝ(x) tanh(πx)dx .



The Selberg trace formula for compact hyperbolic curves
(I) Since Tf sends πs into πKs , which is a line, it is clear that

tr(πs(f )) = χπs (f ).

It follows that the spectral part of the abstract trace formula
is ∑

s

ĝ(
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xĝ(x) tanh(πx)dx .

In particular the term corresponding to the class of 1 in the
geometric side of the trace formula is

vol(Γ\G )f (1) =
area(X )

2π

∫ ∞
0
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The Selberg trace formula for compact hyperbolic curves

(I) It remains to understand the contribution of the other γ. Fix
γ ∈ Γ K {±1}. Then γ is conjugated to

±aγ = ±
(
e l(γ)/2 0

0 e−l(γ)/2

)
with

l(γ) = 2arccosh(
|tr(γ)|

2
).

(II) One easily checks that any matrix conjugating γ to ±aγ also
conjugates Gγ to ±A (which is the centralizer of aγ). We
need to understand Γγ . Note that if γ′ ∈ Γγ , then γ, γ′ are
simultaneously conjugate to ±aγ and ±aγ′ , thus γγ′ is

conjugate to ±
(
e(l(γ)+l(γ′))/2 0

0 e−(l(γ)+l(γ′))/2

)
and so

l(γγ′) = l(γ) + l(γ′).
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The Selberg trace formula for compact hyperbolic curves

(I) Let us assume for simplicity that −1 /∈ Γ. It follows that
l : Γγ → R is a morphism of groups, which is trivially
injective, thus Γγ is cyclic, generated by some γ0. One easily
checks that the various γn0 (with n ≥ 1) are pairwise not
Γ-conjugate.

(II) Now vol(Γγ\Gγ) is easily computable in terms of l0 = l(γ0),
namely an absolute constant (exercise: which one?) times l0.

(III) To compute
∫
Gγ\G f (x−1γx) by a change of variable we

reduce to computing
∫
±A\G f (x−1aγx).
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The Selberg trace formula for compact hyperbolic curves

(I) This is also (recall that f is bi-K -invariant)

1

2

∫
A\G

f (x−1aγx)dx =
1

2

∫
K

∫
N
f ((nk)−1aγnk)dndk

=
1

2

∫
N
f (n−1aγn)dn =

1

2

∫
R
f (
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(II) Combining all these computations yields the Selberg trace
formula for X , as stated in the previous lecture.
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The finiteness theorem

(I) Let Γ be a lattice in G = SL2(R) and let

H = L2(Γ\G ).

Let Hcusp = L2
cusp(Γ\G ) be the cuspidal subspace of H.

Theorem Hcusp is a closed subspace of H.

(II) Say fn ∈ Hcusp converge in H to some f . Fix P ∈ CP(Γ), we
want to prove that fP = 0. Since fP is by design left
N-invariant, it suffices to check that

∫
N\G fP(g)α(g)dg = 0

for all test functions α ∈ C∞c (N\G ). Since we know that
this holds for fn instead of f , it suffices to show that for a
fixed α the linear form f →

∫
N\G fP(g)α(g)dg is continuous.
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The finiteness theorem

(I) But ∫
N\G

fP(g)α(g)dg =

∫
N\G

α(g)

∫
ΓN\N

f (ng)dn =

∫
ΓN\G

α(g)f (g)dg =

∫
Γ\G

(
∑

γ∈ΓN\Γ

α(γg))f (g)dg .

(II) So it suffices to check that F (g) :=
∑

γ∈ΓN\Γ α(γg) is
bounded. Since α has compact support modulo N and N is
compact modulo ΓN , there is a compact C such that
Supp(α) ⊂ ΓNC .
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The finiteness theorem

(I) The number of γ ∈ ΓN\Γ with α(γg) 6= 0 is at most the
number of γ ∈ Γ with γg ∈ C . Now γg ∈ C and γ′g ∈ C
forces γ′γ−1 ∈ CC−1 and since CC−1 is compact, it follows
that there is a constant c such that for each g there are at
most c nonzero terms in the sum defining F , and since α is
bounded, we are done.

(II) Next, we parameterize K̂ by Z via m→ χm with

χm(

(
cos t sin t
− sin t cos t

)
) = e imt .

If V ∈ Rep(K ) let

Vm = {v ∈ V | k.v = χm(k)v , k ∈ K}

be the subspace of vectors of K -type m. By Peter-Weyl, if V
is unitary then

V = ⊕̂m∈ZVm.
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The finiteness theorem

(I) Fix an integer m in the sequel. If s ∈ C let

A(Γ)sm = {f ∈ A(Γ)m|C f =
1− s2

2
f }.

Theorem a) The space A(Γ)sm is finite dimensional.

b) Hcusp,m has an orthonormal basis consisting of smooth
vectors which are eigenvectors of C . Each such eigenvector
is in A(Γ)sm for some s, thus eigenspaces of C on H∞cusp,m are
finite dimensional.

It follows from b) that Acusp(Γ) is dense in Hcusp, which is
not at all trivial a priori!



The finiteness theorem

(I) The proof will keep us busy for a while. Recall that any
f ∈ Acusp(Γ) is rapidly decreasing on Siegel sets, in particular
bounded on any Siegel set. Since finitely many Siegel sets
cover Γ\G , f is bounded on G and so

Acusp(Γ) ⊂ L∞(Γ\G ).

(II) The next beautiful result will be the first key ingredient in
the proof of part a) of the previous theorem:

Theorem (Godement’s lemma) Let X be a finite measure
space and V ⊂ L2(X ) a closed subspace such that
V ⊂ L∞(X ). Then V is finite dimensional.
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The finiteness theorem

(I) The proof is extremely beautiful. First, it is not difficult to
see that V is closed in L∞(X ). Next, the identity map
(V , ||•||∞)→ (V , ||•||2) is clearly continuous, linear and
bijective between the two Banach spaces, thus (by the open
mapping theorem) it is a homeomorphism. Thus there is c
such that

||f ||∞ ≤ c ||f ||2, f ∈ V .

(II) Now let f1, ..., fn ∈ V be an orthonormal family. We will
show that n is bounded, which is enough to conclude. Pick a
dense countable set S ⊂ C and a1, ..., an ∈ S . Letting
f =

∑
ai fi , we obtain

|
n∑

i=1

ai fi (x)| ≤ c

√√√√ n∑
i=1

|ai |2

for almost all x .
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The finiteness theorem

(I) Since S is countable, we deduce that for almost all x , the
previous inequality holds for any a1, ..., an ∈ S and then, by
continuity and density, for all ai ∈ C, in particular for
ai = fi (x). Thus for almost all x we have

n∑
i=1

|fi (x)|2 ≤ c2.

(II) Integrate this over X to get

n =

∫
X

(
n∑

i=1

|fi (x)|2)dx ≤ c2

∫
X
dx <∞.

This finishes the proof.
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The finiteness theorem
(I) Next, we prove that Acusp(Γ)sm is closed in H. Combined

with the previous observations and Godement’s lemma, this
will imply that it is finite dimensional. Say fn ∈ Acusp(Γ)sm
converge in H to some f . It suffices to show that f ∈ A(Γ)sm,
since we have already seen that Hcusp is closed in H (and
fn ∈ Hcusp).

(II) It is easy to see that f must be of K -type m and left

Γ-invariant. Next, we prove that C f = s2−1
2 f in the sense of

distributions. Since f is left Γ-invariant, it suffices to see that∫
Γ\G

(C − s2 − 1

2
)α(x)f (x)dx = 0

for all α ∈ C∞c (Γ\G ). This equality holds with fn instead of
f and we can pass to the limit in L2 sense by
Cauchy-Schwarz (note that (C − s2−1

2 )α has compact
support, thus it belongs to H).
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The finiteness theorem

(I) At this point we can invoke the elliptic regularity and
harmonicity theorem to deduce that f is smooth and
f = f ∗ α for some α ∈ C∞c (G ). But we saw while proving
the GGPS theorem that there is cα such that
|f ∗ α|∞ ≤ cα||f ||2 for any f ∈ Hcusp, in particular f = f ∗ α
is bounded, thus of moderate growth. We finally conclude
that f ∈ A(Γ)sm.

(II) Now we know that Acusp(Γ)sm is finite dimensional. To go
from here to A(Γ)sm we need to understand constant terms
at various cusps. Let P1, ...,Pl be a set of representatives for
Γ\CP(Γ) and look at the map

ϕ : A(Γ)sm →
l∏

i=1

Fct(G ), ϕ(f ) = (fP1 , ..., fPl
).
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The finiteness theorem

(I) The kernel of ϕ is Acusp(Γ)sm, so it suffices to check that its
image is finite dimensional. Thus we are reduced to checking
that the image of f → fPi

is finite dimensional for each i .
Now if Pi has unipotent radical Ni and A-component Ai ,
then fPi

is left Ni -invariant and of K -type m, thus (by the
Iwasawa decomposition) it is completely determined by its

restriction to Ai . The relation C f = s2−1
2 f passes to fPi

and
a direct computation shows that this yields a linear
differential equation with constant terms, of second order,
satisfied by fPi

|Ai
. The space of solutions of such an

equation is finite dimensional, so we are done.

(II) We now move to part b) of the theorem. We use the GGPS
decomposition

Hcusp =
⊕̂
π∈Ĝ

πm(π).
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The finiteness theorem

(I) Pass to vectors of K -type m to get

Hcusp,m =
⊕̂

π∈Ĝ ,πm 6=0

π
m(π)
m

All π ∈ Ĝ are admissible (we will see a proof in great
generality later on, but it also follows from the
classification), thus πm are finite dimensional vector spaces
contained in π∞. Since π is unitary, elements of g act by
anti-symmetric operators on π∞, thus C is self-adjoint on
πm, and thus diagonalizable in an orthonormal basis (to be
fair, πm is actually one dimensional if nonzero, but this is
very specific to our G ...). We deduce from here that Hcusp,m

has an orthonormal basis of C -eigenvectors.



The finiteness theorem

(I) We still need to show that if f ∈ H∞cusp,m is an eigenvector
for C , then it is in A(Γ). Of course, the problem is the
moderate growth. But by harmonicity f = f ∗ α for some
test function α and, while proving the GGPS theorem, we
saw that f ∗ α is bounded, so we are done.



The finiteness theorem

(I) We note that it follows from the classification theorem that
for each λ ∈ C there are at most two π ∈ Ĝ such that
C = λ on π∞. This combined with the previous discussion
(based on the GGPS decomposition) yields an alternate proof
that Acusp(Γ)sm is finite dimensional. This kind of argument
extends as well to other groups (so does the first), but then
rests on a very difficult theorem of Harish-Chandra. The
proof based on Godement’s lemma avoids that deep result.



Modular forms and automorphic forms

(I) We want to relate modular forms and automorphic forms
(something that we should have done long time ago...). The
recipe is surprisingly simple. For any function f on H and
any integer m we can lift f to a function Ff on G
(depending on m as well)

Ff (g) = (f |mg)(i) = f (g .i)µ(g , i)−m,

where µ(g , z) = cz + d is the usual cocycle.

(II) Then one easily checks that Ff (gk) = χm(k)Ff (g) for
k ∈ K , g ∈ G , and Ff |mg (x) = Ff (gx) for all g , x ∈ G .
Moreover, f → Ff is injective since we can recover f from Ff
by the simple but crucial formula

Ff (nxay ) = ym/2f (x+iy), nx :=

(
1 x
0 1

)
, ay =

(
y1/2 0

0 y−1/2

)
So f |mγ = f for all γ ∈ Γ if and only if Ff is left Γ-invariant.
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Modular forms and automorphic forms

(I) Let

X± =
1

2

(
1 ±i
±i −1

)
∈ C⊗R g.

Theorem The map f → Ff induces an isomorphism

Mm(Γ) ' A(Γ)X−=0
m := {F ∈ A(Γ)m|X−F = 0}

and for any F ∈ A(Γ)
X−=0
m we have CF = (m

2

2 −m)F .
Moreover f ∈ Mm(Γ) is in Sm(Γ) if and only if
Ff ∈ Acusp(Γ)m, thus

Sm(Γ) ' Acusp(Γ)X−=0
m .

The differential equation X−Ff = 0 is an incarnation of the
Cauchy-Riemann equation for holomorphic functions.



Classical modular forms

(I) To avoid horrible computations it is better to compute using
the basis of C⊗R g given by

X± =
1

2

(
1 ±i
±i −1

)
, H = −iW ,

where W = e − f =

(
0 1
−1 0

)
satisfies etW = rt . We have

[H,X±] = ±2X±, [X+,X−] = H

and

C =
H2 + 2X+X− + X−X+

2
=

H2 − 2H

2
+ 2X+X−.

(II) The holomorphy of f is equivalent to X−Ff = 0, thanks to
the following identity (where z = x + iy)

(X−Ff )(nxay rθ) = −ie i(m−2)θy1+m
2 (

∂

∂x
+ i

∂

∂y
)f (z) (1).
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Classical modular forms

(I) To prove this, we first get rid of rθ: using the relations
rθX−r

−1
θ = e−2iθX− and Ff (grθ) = e imθFf (g), we easily

obtain
(X−Ff )(urθ) = e i(m−2)θ(X−Ff )(u),

thus we may assume that θ = 0.

(II) Next, we decompose

X− = − i

2
W − ie +

1

2

(
1 0
0 −1

)
.

Since etW = rt and Ff (grt) = e imtFf (g), we easily obtain
HFf = mFf .
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Classical modular forms

(I) Since nxay

(
et 0
0 e−t

)
= nxaye2t , we obtain(

1 0
0 −1

)
Ff (nxay ) =

d

dt
|t=0Ff (nxaye2t )dt =

d

dt
|t=0(ye2t)m/2f (x + ye2t i) = ym/2(mf (z) + 2y

∂f

∂y
(z)).

(II) Similarly, using nxaynt = nx+tyay , we obtain

eFf (nxay ) = y1+m
2
∂f

∂x
(z).

Combining these formulae yields (1).

(III) Finally, the formula for CFf follows immediately from
HFf = mFf , X−Ff = 0 and

C =
H2 − 2H

2
+ 2X+X−.



Classical modular forms

(I) Since nxay

(
et 0
0 e−t

)
= nxaye2t , we obtain(

1 0
0 −1

)
Ff (nxay ) =

d

dt
|t=0Ff (nxaye2t )dt =

d

dt
|t=0(ye2t)m/2f (x + ye2t i) = ym/2(mf (z) + 2y

∂f

∂y
(z)).

(II) Similarly, using nxaynt = nx+tyay , we obtain

eFf (nxay ) = y1+m
2
∂f

∂x
(z).

Combining these formulae yields (1).

(III) Finally, the formula for CFf follows immediately from
HFf = mFf , X−Ff = 0 and

C =
H2 − 2H

2
+ 2X+X−.



Classical modular forms

(I) Since nxay

(
et 0
0 e−t

)
= nxaye2t , we obtain(

1 0
0 −1

)
Ff (nxay ) =

d

dt
|t=0Ff (nxaye2t )dt =

d

dt
|t=0(ye2t)m/2f (x + ye2t i) = ym/2(mf (z) + 2y

∂f

∂y
(z)).

(II) Similarly, using nxaynt = nx+tyay , we obtain

eFf (nxay ) = y1+m
2
∂f

∂x
(z).

Combining these formulae yields (1).

(III) Finally, the formula for CFf follows immediately from
HFf = mFf , X−Ff = 0 and

C =
H2 − 2H

2
+ 2X+X−.



Classical modular forms

(I) It remains to prove that f is holomorphic at cusps if and only
if Ff has moderate growth. The moderate growth condition
for Ff can be tested on Siegel sets at the various P ∈ CP(Γ),
thus it suffices to prove that for a fixed P ∈ CP(Γ), f is
holomorphic at the fixed point z ∈ ∂H of P if and only if
Ff has moderate growth on a Siegel set Σ at z .

(II) Conjugating everything, we may assume that z =∞, thus

P = B and Γ∞ =

(
1 hZ
0 1

)
with h > 0, and we may take

Σ =

(
1 [−c , c]
0 1

)
AtK for some c , t > 0. Consider the

q-expansion of f at ∞

f (z) =
∑
n∈Z

ane
2iπnz/h.
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Classical modular forms

(I) Now, for x ∈ [−c , c], y > t and k ∈ K we have (with
z = x + iy)

|Ff (nxayk)| = |Ff (nxay )| = |yk/2f (z)|

and ||nxayk|| behaves like y1/2 on Σ. Thus we are reduced
to showing the equivalence between:
• an = 0 for n < 0
• there are M,C > 0 such that |f (z)| ≤ CyM for y > t and
x ∈ [−c, c].
This is an elementary exercise. We also leave as an exercise
the fact that f is cuspidal if and only if Ff is so.



Classical modular forms

(I) One can use the previous theorem and extra work to get the
following very beautiful result:

Theorem (Gelfand, Graev, Piatetski-Shapiro) For any
m ≥ 2 there is a natural isomorphism

HomG (DS−m ,Hcusp) ' Sm(Γ).

Thus dim Sm(Γ) is the multiplicity of DS−m in the GGPS
decomposition of Hcusp.

Note that this is an analogue for DS−m of the equality

m(πs) = dim{f ∈ C∞(X )|C f =
1− s2

2
f }

that appeared in the study of a compact hyperbolic curve X .



Classical modular forms

(I) We will only give a sketch of proof. The key point is that the
space of vectors v ∈ DS−m which are of K -type m (in
particular smooth) and killed by X− is one-dimensional. Pick
a generator v . Thus whenever ϕ : DS−m → Hcusp is a

G -equivariant map, f = ϕ(v) is an element of A
X−=0
cusp,m,

which is isomorphic to Sm(Γ) by the previous theorem. Thus
we get a map

HomG (DS−m ,Hcusp)→ Sm(Γ),

which is injective by irreducibility of DS−m .

(II) Surjectivity lies deeper: one needs to check that if f ∈ Sm(Γ)
then the sub-representation of Hcusp generated by Ff is
isomorphic to DS−m . This involves a fine study of
(g,K )-modules, which is skipped.
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Eisenstein series

(I) The orthogonal H⊥cusp of Hcusp in H is controlled by
Eisenstein series, but in a very complicated way. For
simplicity we will assume that there is a unique cusp (up to
the action of Γ), situated at ∞. The associated parabolic
subgroup is P = B and we let as usual ΓN = Γ ∩ N and
ΓP = Γ ∩ P. We saw in a previous lecture that ΓP ⊂ ±ΓN .
One example to keep in mind is Γ = SL2(Z).

(II) Let
U = {s ∈ C|Re(s) > 1}.

Fix an integer m and suppose that m is even or ΓP = ΓN

(if not all Eisenstein series will be 0 and we won’t say
anything smart. Everything below depends on the choice of
m, but we don’t make this explicit).
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Eisenstein series

(I) We will construct a map

E : U → C∞(Γ\G ), s → E (s),

where
E (s)(g) =

∑
γ∈ΓP\Γ

ϕs(γg),

for a suitable function

ϕs ∈ C∞(ΓPNA\G )m.

More precisely,

ϕ(nxayk) := y
1+s

2 χm(k).

More conceptually, we can write ϕs = ϕ•h1+s
P , where

ϕ(nak) = χm(k), hP(nak) = αP(a)1/2 = Im(nak.i)1/2,

where αP : A→ R>0 is the character through which A acts
on Lie(N).



Eisenstein series

(I) A direct but tedious computation shows that

Cϕs =
s2 − 1

2
ϕs .

Theorem If s ∈ U, the series defining E (s)(g) converges
locally uniformly and the resulting function E (s) ∈ A(Γ)sm.
The map E : U → C∞(Γ\G ) is holomorphic.

(II) The proof is tricky for general lattices, the hardest point
being the convergence, but this is an elementary exercise for
SL2(Z), as we will see. The fact that E (s) is killed by

C − s2−1
2 is an elementary consequence of the similar

statement for ϕs . The moderate growth condition follows
from the bounds used to prove convergence, and similarly for
the holomorphic behaviour of E .
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Eisenstein series

(I) Let’s get a bit down to earth and study the case m = 0 and
Γ = SL2(Z). In this case E (s) is right K -invariant and thus
descends to a function on H , and we will simply write
E (s, z) = E (s, g) if z = g .i . Thus

E (s, z) =
∑

γ∈ΓP\Γ

Im(γ.z)
s+1

2 =
1

2

∑
(c,d)∈Z2,gcd(c,d)=1

y
s+1

2

|cz + d |s+1
.

(II) The second equality follows from the description of ΓN\Γ,
which is identified with the set of pairs of relatively prime
integers (by sending ΓNγ to the second row of γ) and the
fact that ΓP = ±ΓN .
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Eisenstein series

(I) It is then very easy to check the absolute and locally uniform
convergence of the series for s ∈ U and to see that E (s) has
moderate growth.

(II) Let

Γ(s) =

∫ ∞
0

e−tts
dt

t
, ζ(s) =

∑
n≥1

1

ns

and
Λ(s) = π−sΓ(s)ζ(2s).

Write E (s, z) = E1( s+1
2 , z), thus

E1(t, z) =
1

2

∑
gcd(c,d)=1

y t

|cz + d |2t
.

Finally set
E ∗1 (t, z) = Λ(t)E1(t, z).
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Eisenstein series

(I) We will prove the following:

Theorem The map U → C∞(Γ\H ) given by t → E ∗1 (t, •)
extends to a meromorphic function on C, holomorphic
everywhere except at 0, 1, where it has simple poles.
Moreover, we have the functional equation

E ∗1 (t, z) = E ∗1 (1− t, z).

(II) It is a standard fact that Λ has meromorphic continuation to
C with a functional equation Λ(t) = Λ( 1

2 − t), thus the
theorem implies that s → E (s, •) also has meromorphic
continuation and a functional equation. Actually the proof
for E1 (given below) is an adaptation of the proof for Λ.
Unfortunately it does not adapt to general Γ, and the proof
in general is much deeper.
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Eisenstein series
(I) We now move to the proof. First, observe that

ζ(2t)E ∗1 (t, z) =
1

2

∑
(c,d)∈Z2−{(0,0)}

y t

|cz + d |2t
.

(II) It follows that (there are no convergence, permutation of
sums and integral issues for t ∈ U)

Λ(t)E ∗1 (t, z) =
∑
c,d

(
y

π|cz + d |2

)t ∫ ∞
0

e−uut
du

u

=
∑
c,d

∫ ∞
0

(
uy

π|cz + d |2

)t

e−u
du

u

=
∑
c,d

∫ ∞
0

e−π|cz+d |2v/yv t
dv

v
=

∫ ∞
0

(θz(v)− 1)v t
dv

v
,

θz(v) :=
∑
c,d∈Z

e−π|cz+d |2v/y .



Eisenstein series
(I) We now move to the proof. First, observe that

ζ(2t)E ∗1 (t, z) =
1

2

∑
(c,d)∈Z2−{(0,0)}

y t

|cz + d |2t
.

(II) It follows that (there are no convergence, permutation of
sums and integral issues for t ∈ U)

Λ(t)E ∗1 (t, z) =
∑
c,d

(
y

π|cz + d |2

)t ∫ ∞
0

e−uut
du

u

=
∑
c,d

∫ ∞
0

(
uy

π|cz + d |2

)t

e−u
du

u

=
∑
c,d

∫ ∞
0

e−π|cz+d |2v/yv t
dv

v
=

∫ ∞
0

(θz(v)− 1)v t
dv

v
,

θz(v) :=
∑
c,d∈Z

e−π|cz+d |2v/y .



Eisenstein series

(I) The Poisson summation formula applied to the function

A(u1, u2) = e−π|u1z+u2|2t/y ,

yields the crucial functional equation

θz(v) =
1

v
θz(v−1).

(II) Split the integral
∫∞

0 (θz(v)− 1)v t dvv in two pieces: one
from 0 to 1 and the other from 1 to ∞. In the first integral
make the change of variable v → 1/v and use the functional
equation above. We obtain

Λ(t)E1(t, z) =
1

2

∫ ∞
1

(θz(v)−1)(v s +v1−s)
dv

v
+

1

2s − 2
− 1

2s
.

We conclude by observing that since θz − 1 has exponential
decay at ∞, the integral converges for any value of s ∈ C
and defines a holomorphic function of s.
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