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Abstract nonsense

(I) Recall the general setup: G is a locally compact (and
countable at infinity), unimodular group (with Haar measure
denoted dg) and Rep(G) is the category of continuous
representations of G on Fréchet spaces.
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Abstract nonsense

Recall the general setup: G is a locally compact (and
countable at infinity), unimodular group (with Haar measure
denoted dg) and Rep(G) is the category of continuous
representations of G on Fréchet spaces.

The space C.(G) has a ring structure via the convolution
product

i x o(x) = /G (e 1)h(g)de.

Theorem Any V € Rep(G) has a natural structure of
Cc(G)-module, denoted (f,v) — f.v = [ f(g)g.vdg, such
that for all f € C.(G) and any continuous linear form / on V
we have

I(Fv) = /G f(g)l(g.v)de.



Abstract nonsense

(I) 1 will only discuss the case of Hilbert representations V.
Given f € C(G), the map sending / € V* (topological dual)
to [ f(g)/(g.v)dg is a continuous linear form on V*, so by
Riesz’ theorem there is a unique f.v € V such that

= [ f(g)l(g.v)dg for all | € V*. One easily checks
that (f1 * fg) v = f1 (f.v) and (A + f2).v = f.v + fh.v (test
these against arbitrary | € V*).
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Abstract nonsense

| will only discuss the case of Hilbert representations V.
Given f € C(G), the map sending / € V* (topological dual)
to [ f(g)/(g.v)dg is a continuous linear form on V*, so by
Riesz’ theorem there is a unique f.v € V such that

= [ f(g)l(g.v)dg for all | € V*. One easily checks
that (f1 * fg) v = f1 (f.v) and (A + f2).v = f.v + fh.v (test
these against arbitrary | € V*).

A Dirac sequence on G is a sequence of functions

fn € Cc(G) such that for all j we have:

e fi(g) >0, fi(g') = fi(g) for all g and [, fi(g)dg = 1.
e Supp(f;) form a decreasing sequence tendmg to {1}" in
an obvious sense.



Abstract nonsense

(I) Dirac sequences always exist, and given a compact subgroup
K of G we can choose them such that f,(kgk™1) = f,(g) for
k€ Kand g € G. If G is a Lie group, we can pick f,
smooth as well.

Theorem If V € Rep(G), v € V and (f,) is a Dirac
sequence, then lim,_ o fh.v = v.
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Abstract nonsense

Dirac sequences always exist, and given a compact subgroup
K of G we can choose them such that f,(kgk™1) = f,(g) for
k€ Kand g € G. If G is a Lie group, we can pick f,
smooth as well.

Theorem If V € Rep(G), v € V and (f,) is a Dirac
sequence, then lim,_ o fh.v = v.

Suppose that V is a Hilbert representation. Given ¢ > 0
there is a neighborhood U of 1 such that ||g.v — v|| < & for
g € U. For n large enough we have Supp(f,) C U and

v =vll = | f(e)ev—vdell < [ fle)l-v—vlde

Sa/ f, =e.
G



Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator
on H is a continuous linear map T : H — H. Any operator
T has an adjoint operator T*, characterised by
(Tv,w) = (v, T*w) for v,w € H (apply Riesz!).



Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator
on H is a continuous linear map T : H — H. Any operator
T has an adjoint operator T*, characterised by
(Tv,w) = (v, T*w) for v,w € H (apply Riesz!).

(I1) For instance, if H is a unitary representation of some G, and
if f € Cc(G), the adjoint of the operator
Tr:H— H,v—fv=[.f(g)g.vdg is T¢-, where
f*(g) = f(g~1!) (easy computation).




Operators on Hilbert spaces

(I) Let H be a separable complex Hilbert space. An operator
on H is a continuous linear map T : H — H. Any operator
T has an adjoint operator T*, characterised by
(Tv,w) = (v, T*w) for v,w € H (apply Riesz!).

(I1) For instance, if H is a unitary representation of some G, and
if f € Cc(G), the adjoint of the operator
Tr:H— H,v—fv=[.f(g)g.vdg is T¢-, where
f*(g) = f(g~1!) (easy computation).

(I11) The space B(H) of operators on H is a Banach algebra for
the norm || T[| = sup,.q || Tv||/[|v||. The operator
T € B(H) is called self-adjoint if T = T*, unitary if
TT*=T*T =1id (i.e. T is an isometry), positive if
(Tv,v) >0 for all v (such a T is then self-adjoint) and
finally normal if T commutes with T*.



Operators on Hilbert spaces
(I) The spectrum of T € B(H) is
o(T)={A e C|X— T is not invertible }.
By Gelfand’s theory o(T) is a compact subset of C and

max |/\|— lim || 77|/,
Aeo(T n—o0

the spectral radius of T. If T is normal, then
limp o0 || T7|[Y/7 = T2 =T
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Operators on Hilbert spaces
The spectrum of T € B(H) is
o(T)={A e C|X— T is not invertible }.
By Gelfand’s theory o(T) is a compact subset of C and

max |/\|— lim || 77|/,
A€o (T n—o0

the spectral radius of T. If T is normal, then
limp o0 || T7|[Y/7 = T2 =T

Suppose now that T is self-adjoint and let K = o(T). Then
K is compact in R, so (Stone-Weierstrass) any f € C(K) is
a limit of polynomial functions p,. The operators p,(T)
converge to an operator f(T) € B(H) (use that for

p € C[T] is normal, thus ||p(T)|| = maxxek |p(x)|). This
yields an isometric morphism of Banach algebras

C(K) — B(H),f — f(T) (functional calculus).



Operators on Hilbert spaces

(I) An operator T € B(H) is called compact if T sends
bounded subsets of H to relatively compact subsets, or
equivalently T is a limit (in B(H)) of operators of finite
rank. The set K(H) of compact operators is closed in B(H)
and forms a two-sided ideal in B(H).



Operators on Hilbert spaces

(I) An operator T € B(H) is called compact if T sends
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bounded subsets of H to relatively compact subsets, or
equivalently T is a limit (in B(H)) of operators of finite
rank. The set K(H) of compact operators is closed in B(H)
and forms a two-sided ideal in B(H).

Say now dim H = oco. Then for any compact operator T we
have 0 € o(T) and o(T) \ {0} is at most countable and
consists of eigenvalues of T. The eigenspaces corresponding
to nonzero eigenvalues are finite dimensional. If T is
moreover normal, then ker( T)* has an ON-basis of
eigenvectors, and the corresponding eigenvalues tend to 0.



Operators on Hilbert spaces

(I) An operator T € B(H) is called Hilbert-Schmidt (or simply
HS), respectively of trace class (or simply TC) if H has an
ON-basis (e,), such that 3° || Ten||> < oo, respectively
2nll Tenl| < 0.



Operators on Hilbert spaces

(I) An operator T € B(H) is called Hilbert-Schmidt (or simply
HS), respectively of trace class (or simply TC) if H has an
ON-basis (e,), such that 3° || Ten||> < oo, respectively
2nll Tenl| < 0.

(I1) Let HS(H), resp. TC(H) be the sets of HS, resp. trace class
operators on H.

Theorem 1) We have TC(H) = {AB|A,B € HS(H)} and
HS(H) C K(H) (thus TC(H) C K(H)).
2) T € B(H)isin TC(H) if and only if >~ [(Ten, fa)| < 00
for any ON-bases (e,), and (f,), of H, and
Tr(T) :=>_,(Ten, en) converges absolutely and is
independent of the choice of the ON-basis.



Operators on Hilbert spaces

(I) This theorem is not trivial, but not too hard either, I'll make
a series of exercises devoted to its proof later on.



Operators on Hilbert spaces

(I) This theorem is not trivial, but not too hard either, I'll make
a series of exercises devoted to its proof later on.

(I1) Here is a key example of HS operators:
Theorem (Hilbert-Schmidt) If (X, 1) is a measure space

such that H = L2(X, 1) is separable and if K € L?(X x X)
then the operator Ty € B(H) defined by

Tw(F)(x) = /X K(xy)F(y)du(y)

is HS.



Operators on Hilbert spaces

(I) The proof is easy: pick an ON-basis (e,) of H. By Fubini
K(x,+) € L2(X) for almost all x and
Tk (en)(x) = (K(x,s),€,), thus (using Plancherel and
Fubini, and noting that €, also form an ON-basis)

S T2 =3 /X (K (x, ). &) 2du(x)

= 1K) i) = 1K ey < -
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Operators on Hilbert spaces

The proof is easy: pick an ON-basis (e,) of H. By Fubini
K(x,+) € L2(X) for almost all x and

Tk (en)(x) = (K(x,s),€,), thus (using Plancherel and
Fubini, and noting that €, also form an ON-basis)

S T2 =3 /X (K (x, ). &) 2du(x)

= 1K) i) = 1K ey < -

As a concrete example, let G be as usual and let I be a
closed unimodular subgroup in G such that X =T\G is
compact (e.g. I is a co-compact lattice). Let H = L?(X)
with the natural action of G. For f € C.(G) let T be the

operator ¢ — f.p = (x — fG f(g)e(xg)dg).



Operators on Hilbert spaces

(I) We compute

Tr)(x) = /G F(x1g)p(g)dg = /r @) /r F(x"rg)dv)dg

=/ Kr(x,y)e(y)dy, Kf(X,y)Z/f(X_lw)d'y.
X r



Operators on Hilbert spaces

(I) We compute

Tr)(x) = /G F(x1g)p(g)dg = /r o) /r F(x"rg)dv)dg

\G

=/ Kr(x,y)e(y)dy, Kf(XaY):/f(X_l'YY)d'Y-
X r

(1) Now Kr € Co(X x X) C L?(X x X) (as X is compact!),
thus Ty is HS by the above theorem. The next theorem is
MUCH deeper:

Theorem (Dixmier-Malliavin) If G is moreover a real Lie
group, then Ty € TC(L?(T\G)) for all f € C>(G) and

Tr(Tf):/XKf(x,x)dx.



Operators on Hilbert spaces

(I) This follows from an amazing theorem of Dixmier-Malliavin,
saying that any ¥ € C2°(G) is a finite sum of functions of
the form f; * f, with f; € C2°(G). Now T.s, = T4 Ty, and
Tr € HS, thus Ty, € TC and T € TC. The computation
of the trace for f = f; % f, is a simple computation (exercise)
with ON-bases and the general case follows.
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Operators on Hilbert spaces

This follows from an amazing theorem of Dixmier-Malliavin,
saying that any ¥ € C2°(G) is a finite sum of functions of
the form f; * f, with f; € C2°(G). Now T.s, = T4 Ty, and
Tr € HS, thus Ty, € TC and T € TC. The computation
of the trace for f = f; % f, is a simple computation (exercise)
with ON-bases and the general case follows.

We will now move on to applications of these very general
results to representation theory.



Application 1: Schur's lemma

(I) The following result is fundamental (and the proof is much
subtler than for finite groups!). Keep a general G for now
(so locally compact, unimodular, countable at infinity):

Theorem (Schur’s lemma) For any V € G we have
Endg(V) =C, i.e. all G-equivariant endomorphisms are
scalar.



(1

(1)

Application 1: Schur's lemma

The following result is fundamental (and the proof is much
subtler than for finite groups!). Keep a general G for now
(so locally compact, unimodular, countable at infinity):

Theorem (Schur’s lemma) For any V € G we have
Endg(V) =C, i.e. all G-equivariant endomorphisms are
scalar.

Let A= Endg(V), a closed C-subalgebra of B(H), stable by
passage to adjoints (by unitarity of V). If T € A, then

T = T+2T* + e TE,.T* and T+2T*, TEI.T* are self-adjoint, so it
suffices to prove that any self-adjoint T € A is scalar, i.e.
that its spectrum K = o(T) has one point (as then T — X is

self-adjoint and o(T — A) = {0}, thus T = \).
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Application 1: Schur's lemma

The following result is fundamental (and the proof is much
subtler than for finite groups!). Keep a general G for now
(so locally compact, unimodular, countable at infinity):

Theorem (Schur’s lemma) For any V € G we have
Endg(V) =C, i.e. all G-equivariant endomorphisms are
scalar.

Let A= Endg(V), a closed C-subalgebra of B(H), stable by
passage to adjoints (by unitarity of V). If T € A, then

T = T+2T* + e TE,.T* and T+2T*, TEI.T* are self-adjoint, so it
suffices to prove that any self-adjoint T € A is scalar, i.e.
that its spectrum K = o(T) has one point (as then T — X is

self-adjoint and o(T — A) = {0}, thus T = \).

If |K| > 2, one easily shows that there are f, g € C(K)
nonzero such that fg = 0.



Schur’s lemma for unitary representations

(I) Note that f(T) € Afor f € C(K) (since f(T) is a limit of
polynomials in T and A is closed in B(H)). Also
f(T)g(T)=(fg)(T)=0.If f(T),g(T) #0, then
ker(f(T)) is a sub-representation of V different from 0 and
V/, contradicting the irreductibility of V. So WLOG
f(T)=0. But then f =0, since T — f(T) is an isometry, a
contradiction.



Discrete decompositions

(I) Let Hy, Ha, ... be separable Hilbert spaces. Their Hilbert
sum H = @&,H, is the Hilbert space obtained by completing
@®n,H, with respect to the hermitian product

((xn)n; (yn)n) = Z<Xnvyn>-

Concretely, H is the space of sequences (x,), with x, € H,
and Y, ||xal|? < oo (with the hermitian product above).



Discrete decompositions

(I) Let Hy, Ha, ... be separable Hilbert spaces. Their Hilbert
sum H = @&,H, is the Hilbert space obtained by completing
@®n,H, with respect to the hermitian product

((xn)n; (yn)n) = Z<Xnvyn>-

Concretely, H is the space of sequences (x,), with x, € H,
and Y, ||xal|? < oo (with the hermitian product above).

(I1) If H, are unitary representations of some G, then so is
H = ®,H, (Via g-(Xn)n = (g~Xn)n)'
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Discrete decompositions

Let Hy, Hy, ... be separable Hilbert spaces. Their Hilbert
sum H = ®,H, is the Hilbert space obtained by completing
@®nH, with respect to the hermitian product

((xn)n; (yn)n) = Z<Xnvyn>-

n

Concretely, H is the space of sequences (x,), with x, € H,
and Y, ||xal|? < oo (with the hermitian product above).

If H, are unitary representations of some G, then so is

H = &,H, (via g.(xn)n = (g-Xn)n).

We say that a unitary representation H of G has a discrete
decomposition if there are irreducible unitary
sub-representations H, with H = &,H, and each occurs
with finite multiplicity, i.e. any 7 € Gis isomorphic to only
finitely many H,.



Discrete decompositions

(I) Equivalently (use Schur's lemma) a unitary rep. H has
discrete decomposition if we can write

—

H~ @ﬂeéw@m(”) ~ @ﬂ_eéﬂ' ® Homg(m, H)

with m(7) = dim Homg (7, H) < co. The following theorem
is fundamental:

Theorem (Gelfand-Graev, Piatetski-Shapiro) If H is a
unitary representation of G such that Ty is a compact
operator on H for all f € C.(G), then H has a discrete
decomposition.

If G is a real Lie group, it suffices to impose the condition
for f € C°(G) (as the proof shows).



Discrete decompositions

(I) The main step is showing that any nonzero
sub-representation W contains an irreducible
sub-representation. For this, we start by picking (use Dirac
sequences) f € Cc(G) such that T := T¢|w is nonzero and
self-adjoint. As T is also compact, it has a nonzero
eigenvalue A. Among stable subspaces V' of W for which
V[A] := ker(T — X) is nonzero, pick one that minimises
dim V[A], and pick v € V[A] nonzero.
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Discrete decompositions

The main step is showing that any nonzero
sub-representation W contains an irreducible
sub-representation. For this, we start by picking (use Dirac
sequences) f € Cc(G) such that T := T¢|w is nonzero and
self-adjoint. As T is also compact, it has a nonzero
eigenvalue A. Among stable subspaces V' of W for which
V[A] := ker(T — X) is nonzero, pick one that minimises
dim V[A], and pick v € V[A] nonzero.

We claim that Vi = Span(G.v) is irreducible. If not,

Vi = Ui @ Uy, orthogonal sum of nonzero
sub-representations. Then U; are stable under T and

Vi[A] = Ui[A] @ Uz[A]. By minimality of V one of U;[\] is 0
so WLOG v € Uq, but then V; C Uy and Us =0, a
contradiction.



Discrete decompositions

(I) Next we show that H is a Hilbert direct sum of irreducible
sub-representations. A set of irreducible and pairwise
orthogonal sub-reps. of H is called an orthogonal family.
One easily checks (use Zorn's lemma) that there is a
maximal orthogonal family A. The orthogonal W of > _ 7
(equivalently of &,ca7) is a sub-representation containing
no irreducible sub-representation (by maximality of A), thus
by the first step W =0 and H = &,car.
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Discrete decompositions

Next we show that H is a Hilbert direct sum of irreducible
sub-representations. A set of irreducible and pairwise
orthogonal sub-reps. of H is called an orthogonal family.
One easily checks (use Zorn's lemma) that there is a
maximal orthogonal family A. The orthogonal W of > _ 7
(equivalently of &,ca7) is a sub-representation containing
no irreducible sub-representation (by maximality of A), thus
by the first step W =0 and H = &,car.

Finally, we check that multiplicities are finite. Say 1, ..., T,
are irreducible, pairwise isomorphic, and all appear in H.
Pick f € C.(G) such that Ty is self-adjoint and nonzero on
71, and pick a nonzero eigenvalue A of Tr on 7. The
eigenspaces 7;[\] are all isomorphic to m1[A] (as m; ~ 1), in
particular nonzero, and are in direct sum inside H[}], thus

n < dim H[A] < oo (as Ty is compact).



Discrete decompositions

(I) Combining the previous results, we obtain:

Theorem (GGPS)

Let G be a unimodular, locally compact group and let I a
unimodular closed subgroup (e.g. a lattice) such that

X :=T\G is compact. Then [%(X) with the natural unitary
action of G (by right translation) has a discrete
decomposition.

Indeed, we have already seen that T¢ is HS on L2(X), thus
compact, so the previous theorem applies.



Application 3: compact groups, Peter-Weyl theory

(I) Consider a compact group K. Let dk be the unique Haar
measure with [, dk = 1.

Theorem Any finite dimensional V' € Rep(K) has a
structure of unitary representation of K, and V is a direct
sum of irreducible representations.

Pick any hermitian product (.,.) on V and define

(v, W):/K<k.v, k.w)dk,

a K-invariant hermitian product making V unitary. For the
second part, if V is irreducible, we are done, otherwise pick a
sub-representation W # V. Then W+ is K-stable and

V =W ® WL, so we are done by induction on dim V.



Application 3: compact groups, Peter-Weyl theory

(I) The following theorem is classical for finite groups:
Theorem (Schur’s orthogonality relations)

a) Any V € K is finite dimensional.
b) Let U,V € K and let a;,a, € U and by, by € V. Then

/ (k.al, 32><k.b1, b2>dk
K

is 0 when U # V and equal to % when U = V.



Application 3: compact groups, Peter-Weyl theory

(I) The proof is based on Schur’'s lemma and follows the proof
for finite groups, with some twists.
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(I) The proof is based on Schur’'s lemma and follows the proof
for finite groups, with some twists.

(1) Let V € K. First we prove that there is d > 0 such that for
all u,v € V we have

/| )2 = [[vI[2e][wl*
T



Application 3: compact groups, Peter-Weyl theory

(I) The proof is based on Schur’'s lemma and follows the proof
for finite groups, with some twists.

(1) Let V € K. First we prove that there is d > 0 such that for
all u,v € V we have

/| )2 = [[vI[2e][wl*
T

(II1) Fix vo € V nonzero. The K-invariant hermitian product

(v,w) = /K<k.v, vo) (k.w, vp)dk

is continuous (Cauchy-Schwarz), thus it is given by (Av, w)
for some A € Endg(V) = C (Schur's lemma). Thus there is
a(vy) > 0 such that

/|<k-V,v0>\2dk:OZ(VO)HVHZ’ vv.
K



Application 3: compact groups, Peter-Weyl theory
(I) But
/y<k.v, v0>|2dk_/ ]<v,k1.vo>\2dk_/ [(kovo, v) [2dk.
K K K

Comparing these formulae yields a(v) = ||v||?/d for some
constant d > 0 and proves the first claim.



Application 3: compact groups, Peter-Weyl theory
(I) But
/y<k.v, v0>|2dk_/ ]<v,k1.v0>\2dk_/ [(kovo, v) [2dk.
K K K

Comparing these formulae yields a(v) = ||v||?/d for some
constant d > 0 and proves the first claim.

(I1) Next we prove that dimV < oo and d =dim V. If e, ..., e,
is any orthonormal family (not basis a priori!) of V/, then
S kv, e)]? < ||k.v||? = [|v]|? for all v, thus

nV2 = .Ve'2 V2 = V2.
VI 2/d /K(Zuk ey )dkg/Kn Pdk = ||v]



Application 3: compact groups, Peter-Weyl theory
(I) But

/y<k.v, v0>|2dk_/ ]<v,k1.v0>\2dk_/ [(kovo, v) [2dk.
K K K

Comparing these formulae yields a(v) = ||v||?/d for some
constant d > 0 and proves the first claim.

(I1) Next we prove that dimV < oo and d =dim V. If e, ..., e,

is any orthonormal family (not basis a priori!) of V/, then
S kv, e)]? < ||k.v||? = [|v]|? for all v, thus

nV2 = .Ve'2 V2 = V2.
VI 2/d /K(Zuk ey )dkg/Kn Pdk = ||v]

(II1) Thus dim V < co. But then we can choose the e; an
ON-basis of V and then Y, |(k.v, &)|> = ||k.v||? = ||v||? for
all v. The same computation shows that n = d. This
finishes the proof for U = V.



Application 3: compact groups, Peter-Weyl theory

(I) Suppose now that U # V. Using the previous results and
Cauchy-Schwarz, we deduce that the K-invariant hermitian
form

B(u,v) = /K<k.u,32><k.v, by )dk

is continuous, thus given by (A(u), v) for some
A € Homg (U, V). The latter space is 0, so we are done.



Application 3: compact groups, Peter-Weyl theory
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Suppose now that U # V. Using the previous results and
Cauchy-Schwarz, we deduce that the K-invariant hermitian
form

B(u,v) = /K<k.u,32><k.v, by )dk

is continuous, thus given by (A(u), v) for some
A € Homg (U, V). The latter space is 0, so we are done.

By the previous theorem we can define the character
Xr € C(K) of m € K, with x(k) the trace of the
endomorphism v — k.v. Define

er = dim(m)xx € C(K).



Application 3: compact groups, Peter-Weyl theory

(1) For m € K and V € Rep(K) we can define a continuous
linear map

T.: V=V, v—ev _/ er(k)k.vdk.
K
If V is a unitary rep. of K, then T is a self-adjoint operator
on V, since e;(g~1) = e:(g) (because, by compactness, the
eigenvalues of v — k.v are on the unit circle). We can
re-interpret (exercise) the orthogonality relations as follows:

Theorem a) For m # o € K we have e, * e, = e, and

er *x e, = 0. The operator T, acts by identity on 7 and by 0
on any other o € K.

b) For any V € Rep(G), the operator T is a projection
onto its image V/(r), called the 7-isotypic component of
V. If V is unitary, T is an orthogonal projection.



Application 3: compact groups, Peter-Weyl theory

(1) Consider now H = L?(K), with the action of K by left
translation g.f(x) = f(g !x). Then

Te(p) =fxg, fe C(K),pe l*K).

Theorem (Peter-Weyl)

a) We have canonical isomorphisms L2(K)(7) ~ 7= @ 7* for
meKand f=3 _ge-xffor fel?K).

b) There is a canonical isomorphism of

K x K-representations

L2(K) 2@71’@77*.



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

PK)=EP X
WER

with X; = Hom(m, L?(K)) and dim X, < co.



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

PK)=EP X
nek
with X; = Hom(m, L?(K)) and dim X, < co.

(I1) Also T, acts by identity on X; ® m and by 0 on the other
summands, so L?(K)(7) = Im(T,) = X, @ 7. It suffices
therefore to prove that X, ~ 7*.



Application 3: compact groups, Peter-Weyl theory

(I) By GGPS we have a discrete decomposition

PK)=EP X
ﬂ’ER

with X; = Hom(m, L?(K)) and dim X, < co.
(I1) Also T, acts by identity on X; ® m and by 0 on the other

summands, so L?(K)(7) = Im(T,) = X, @ 7. It suffices
therefore to prove that X, ~ 7*.

(1) We claim that the inclusion L?(K) C C(K) induces an
isomorphism X, ~ Homg(m, C(K)). The latter is identified
with 7*, by sending u € Homg (7, C(K)) to
vemn—u(v)(l)and /€ 7 to v — (k — I(k.v))
(Frobenius reciprocity).



Application 3: compact groups, Peter-Weyl theory

(I) To prove the claim, pick ¢ € X, we want to prove that
o(m) € C(K). Now ¢(m) is a finite dimensional subspace
sub-representation of L2(K). If f € p(7), then
W = {Th(e)| h € C(K)} is finite dimensional (contained in
©(7)) and using Dirac sequences we see that f € W = W/,
thus there is h € C(K) such that f = Tp(f) € C(K).

Theorem (Peter-Weyl) For any V € Rep(K) the space Vi
of K-finite vectors is given by Vix = > . V(7) and it is
dense in V. There are natural isomorphisms

7 ® Homg (mw, V) ~ V(7).



Application 3: compact groups, Peter-Weyl theory

(I) We first prove the inclusion Vi C >~ _V/(m). If v € Vi, then
Span(K.v) is a finite dimensional representation of K, thus a
direct sum of irreducible reps. 71, ..., s, and T, acts by
identity on 7, thus v € > V(7).
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(I) We first prove the inclusion Vi C >~ _V/(m). If v € Vi, then
Span(K.v) is a finite dimensional representation of K, thus a
direct sum of irreducible reps. 71, ..., s, and T, acts by
identity on 7, thus v € > V(7).

(I1) For the rest, the crucial claim is that for v € V()
W = Span(K.v) ~ 7®N for some integer N > 1. It suffices
to check that dim W < oo, since T, acts by identity on W
(and kills any o € K different from 7).



Application 3: compact groups, Peter-Weyl theory

(I) We first prove the inclusion Vi C >~ _V/(m). If v € Vi, then
Span(K.v) is a finite dimensional representation of K, thus a
direct sum of irreducible reps. 71, ..., s, and T, acts by
identity on 7, thus v € > V(7).

(I1) For the rest, the crucial claim is that for v € V()
W = Span(K.v) ~ 7®N for some integer N > 1. It suffices
to check that dim W < oo, since T, acts by identity on W
(and kills any o € K different from 7).

(111) By Hahn-Banach it suffices to check that dim W* < oo
(continuous dual). But one easily checks that sending
I € W* to f;: k — I(k~1.v) embeds W* in the finite
dimensional space of functions f such that T,(f) = (f)
(recall that T is compact!).



Application 3: compact groups, Peter-Weyl theory

(I) Next, we prove that Vi is dense in V. If not, pick / € V*
nonzero but vanishing on V. Fix v € V and set
©(k) = I(k=1.v), then ¢ € C(K) and one checks that
exxp=0"formwe K, thus by the previous theorem ¢ = 0
and / = 0.

Theorem (Peter-Weyl) Any irreducible V € Rep(K) is
finite dimensional.

Each V/(7) is 0 or V by irreducibility, and > V/(7) is dense,
so for some 7 we have V(7)) = V. But the previous theorem
shows that V() is a direct sum of copies of 7, thus V ~
and we are done.



Problem set

(I) Let H, H' be unitary representations of G (with the usual
hypotheses on G), with H irreducible. Prove that any
T € Homg(H, H') has closed image and induces an
isomorphism between H and a sub-representation of H'.
Hint: use Schur’'s lemma.
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(I) Let H, H' be unitary representations of G (with the usual
hypotheses on G), with H irreducible. Prove that any
T € Homg(H, H') has closed image and induces an
isomorphism between H and a sub-representation of H'.
Hint: use Schur’'s lemma.

(II) Let H, H' be unitary representations of G such that H ~ H’
in Rep(G). Prove that there is an isomorphism
U € Homg(H, H') such that ||[U(h)|| = ||h|| for all h € H.
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Problem set

Let H, H' be unitary representations of G (with the usual
hypotheses on G), with H irreducible. Prove that any

T € Homg(H, H') has closed image and induces an
isomorphism between H and a sub-representation of H'.
Hint: use Schur’'s lemma.

Let H, H' be unitary representations of G such that H ~ H’
in Rep(G). Prove that there is an isomorphism
U € Homg(H, H') such that ||[U(h)|| = ||h|| for all h € H.

Prove that the characters ¢, of elements 7 € K form an
ON-basis of L2(K). Also, a finite dimensional representation
V of K is irreducible if and only if (xv, xv) = 1.



Problem set

(I) In the next exercises H is a separable Hilbert space and we
use the notations B(H), HS(H), TC(H), etc as in the
lecture.
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(I) In the next exercises H is a separable Hilbert space and we
use the notations B(H), HS(H), TC(H), etc as in the
lecture.

(I1) Let T € HS(H) and let (e,) and (f,), be an ON-bases of H.
Using the Plancherel formula twice, prove that
S T (en)l? =32, 1| T*(f2)]]?. Deduce that T* € HS(H)
and that >°_ || T(en)||? is independent of the ON-basis (e,) .



Problem set

(I) In the next exercises H is a separable Hilbert space and we
use the notations B(H), HS(H), TC(H), etc as in the
lecture.

(I1) Let T € HS(H) and let (e,) and (f,), be an ON-bases of H.
Using the Plancherel formula twice, prove that
S T (en)l? =32, 1| T*(f2)]]?. Deduce that T* € HS(H)
and that >°_ || T(en)||? is independent of the ON-basis (e,) .

(III) Prove that any T € HS(H) is compact. Hint: pick an
ON-basis (e,) and consider the operators

To(v) = Zkgnw’ ex) T (ex).



Problem set

(I) Let T € B(H) and S € HS(H).
a) Prove that TS, ST € HS(H).
b) If T € HS(H), prove that TS, ST € TC(H).



Problem set

(I1) In this exercise we will prove that any T € TC(H) can be
written T = AB with A, B € HS(H).

a) Explain why T is compact and why ker(T*T) = ker(T).
Deduce that ker(T)* has an ON-basis (v,), such that
T*Tv, = A\pv, for some A\, > 0 tending to 0.

b) Define operators S, U by setting them equal to 0 on
ker(T) and asking that Sv,, = v/ A,v, and Uv, = \/%Vn-

Prove that T = US? and that ||Uv|| = ||v|| for v € ker(T)> .

c) Let (e,) be an ON-basis of H such that > || Te,|| < oo.
Prove that || Te,|| > ||Sen||> (use Cauchy-Schwarz) and
deduce that S, U € HS(H). Conclude.



Problem set

(I) Let T € TC(H) and let (ep), and (f,)n be two ON-bases of
H.
a) Prove that

> [ Ten i) (i en)| < || Teal|
k

and deduce that > [(Ten, fx) (fk, en)| < oo.
b) By computing ka (Ten, fi){fx, €n) in two different ways,

prove that
> (Ten,en) = > (Tho fr).

n n



