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What is an automorphic form?

(I) In the sequel G will be a connected reductive Q-group,
with a fixed maximal compact subgroup K of G (R) and
a fixed arithmetic subgroup Γ ⊂ G (Q).

(II) The space of automorphic forms of level Γ on G (rel. to K )

A (G , Γ) ⊂ C∞(Γ\G (R))

consists of those f ∈ C∞(Γ\G (R)) such that:

• f is right K -finite, i.e. dimSpank∈K f (•k) <∞.

• f is Z-finite (see below)

• f has moderate growth (see below).
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Z-finiteness
(I) Recall that the (complex) Lie algebra g of G acts on

C∞(G (R)) by

X .f (g) = lim
t→0

f (g exp(tX ))− f (g)

t
.

Let U(g) (enveloping algebra of g) be the sub-algebra of
EndC(C∞(G (R))) generated by f → X .f for X ∈ g.

(II) It follows from theorems of Chevalley and Harish-Chandra
(cf. next lectures) that the center

Z(g) = Z (U(g))

of U(g) is a polynomial algebra in as many generators as the
rank of a maximal torus in G .

(III) A map f ∈ C∞(G (R)) is called Z-finite if

dimSpanX∈Z(g)X .f <∞.
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Moderate growth

(I) Pick a Q-embedding G ⊂ GLn(C). We have a natural norm
on GLn(R), inducing one on G (R)

||g || =
√

Tr(tgg) + 1/ det(g)2.

(II) A map f : G (R)→ C has moderate growth (or MG) if
there are c ,N such that

|f (g)| ≤ c ||g ||N , ∀g ∈ G (R).

This notion is independent (exercise!) of the choice of the
embedding of G in GLn(C).
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Applications of harmonicity

(I) A (G , Γ) is contained in C∞(Γ\G (R)), but it is not stable
under G (R) (because of the K -finiteness condition).
Remarkably, it is stable under the infinitesimal action of
G (R), i.e. under g. This is not trivial at all because of the
MG condition, but, as for SL2, this follows from the
harmonicity theorem (valid in this degree of generality, cf.
next lectures). More precisely:

Theorem (Harish-Chandra) Any f ∈ A (G , Γ) is real
analytic on G (R), satisfies f = f ∗ α for some
α ∈ C∞c (G (R)), and has uniform moderate growth: there
is N such that for all X ∈ U(g) we have

sup
g∈G(R)

|X .f (g)|
||g ||N

<∞.



The finiteness theorem

(I) Since A (G , Γ) is clearly stable under K , it is a
sub-(g,K )-module of C∞(Γ\G (R)).

(II) Our goal for today is to start the (sketch of the) proof of the
following deep and fundamental result, at the basis of the
theory:

Theorem (Harish-Chandra’s finiteness theorem) For any
ideal J of finite codimension in Z(g) the (g,K )-module

A (G , Γ)[J] = {f ∈ A (G , Γ)| J.f = 0}

is admissible, i.e. for any π ∈ K̂

dimHomK (π,A (G , Γ)[J]) <∞.
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Dévissage via the split component

(I) We say that f ∈ C∞(Γ\G (R)) has Z-type J if J.f = 0 and
K -type π1, .., πr ∈ K̂ if

C[K ].f '
r⊕

i=1

πi .

The theorem is equivalent to: for any ideal J of finite
codimension in Z(g) and any π1, ..., πr the space of forms
f ∈ A (G , Γ) of types J and π1, ..., πr is finite dimensional.

(II) We will first reduce the theorem to the case AG = 1
(introduced below), then prove it for cuspidal forms (to be
defined...) and finally deduce it by a rather subtle inductive
argument.
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Dévissage via the split component

(I) Let Zspl be the largest Q-split torus contained in the centre
of G . The split component AG of G is

AG = Zspl(R)0.

Let X (G )Q be the set of characters G → Gm defined over
Q. The subgroup

0G = {g ∈ G | χ(g)2 = 1 ∀χ ∈ X (G )Q}

of G is Zariski closed, defined over Q, normal, thus
reductive, though not necessarily connected.

(II) For automorphic business all the hard part is in 0G : if G is
semi-simple 0G = G and AG = {1}.
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Dévissage via the split component

(I) The objects AG and X (G )Q are quite simple:

• the map X (G )Q → X (Zspl)Q is easily seen to be injective,
with finite cokernel. If k = rk(Zspl), we thus have

X (G )Q ' Zk , AG ' Rk
>0.

• letting aG = Lie(AG ), the exponential map is an
isomorphism aG ' AG . If log : AG → aG is its inverse, then
χ→ dχ(1) and λ→ (a→ eλ(log a)) give inverse bijections

X (AG ) := Homcont
gr (AG ,R>0) ' a∗G .

Moreover, X (G )Q is a lattice in a∗G via

X (G )Q ⊗ R ' X (AG ) ' a∗G .



Dévissage via the split component

(I) One checks that G (R) =0 G (R)× AG and that 0G (R)
contains G (R)der and any compact subgroup of G (R). The
arithmetic subgroup Γ of G (Q) is contained in 0G (R) and a
lattice in there (Borel, Harish-Chandra theorem).

(II) If f ∈ C∞(Γ\G (R)) is Z-finite, an exercise in PDE shows

f (x , a) =
d∑

i=1

Qi (a)(Xi •f )(x), (x , a) ∈ G (R) =0 G (R)× AG

for some
Xi ∈ Z(g), Qi ∈ C[aG ]⊗ X (AG ).

Thus each Qi is a finite sum of functions of the form
a→ eλ(log a)P(log a) with λ ∈ a∗G and P a polynomial
function on aG .
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Dévissage via the split component

(I) If f is automorphic of types J and π1, ..., πr ∈ K̂ then Xi •f
are automorphic for 0G , of types Z(0g) ∩ J and π1, ..., πr .
The Qi are killed by J ∩ U(aG ), of finite codimension in
U(aG ). An exercise in analysis shows that the Qi live in a
finite dimensional vector space, reducing the finiteness
theorem to the case AG = 1.

(II) The next step is to study the cuspidal space, as we did for
SL2. This requires the fundamental notion of parabolic
subgroups. They play a key role in the theory (as it was clear
for SL2), controlling the behavior at ∞. The theory is
however much more involved for general G than for SL2...
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Parabolic subgroups

(I) For a Zariski closed subgroup P of G the following
statements are (very nontrivially) equivalent, in which case
we say that P is a parabolic subgroup of G :

• G (C)/P(C) is a compact topological space.

• P contains a Borel subgroup of G .

• there is a morphism of algebraic groups λ : Gm → G such
that

P = P(λ) := {g ∈ G | lim
t→0

λ(t)gλ(t)−1 exists in C}.



Parabolic subgroups

(I) If G = GLn(C), the last description implies that parabolic
subgroups are the stabilisers of flags

{0} = V0 ⊂ V1 ⊂ ... ⊂ Vs = Cn,

i.e. block upper triangular matrices in which the diagonal
blocks have sizes n1, ..., ns , with ni = dimVi/Vi−1 satisfying
n = n1 + ...+ ns .

(II) G has no proper (i.e. different from G ) Q-parabolic if and
only if Gder is Q-anisotropic, in which case the automorphic
life is not hard: if moreover AG = 1 (i.e. G is
Q-anisotropic), then all automorphic forms are bounded
since Γ\G (R) is compact, and the finiteness theorem is a
(relatively) simple consequence of Godement’s lemma.
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Constant term, cusp forms

(I) Let P be a Q-parabolic of G , with unipotent radical N.
Then N(R) ∩ Γ is a co-compact lattice in N(R) (exercise!)
and we get a map, constant term along P

C (Γ\G (R))→ C (N(R)\G (R)), f → fP ,

fP(g) =

∫
N(R)∩Γ\N(R)

f (ng)dn, g ∈ G (R),

where dn is the Haar measure on N(R) giving
N(R) ∩ Γ\N(R) mass 1.

(II) Say f is cuspidal or cusp form if fP = 0 for any proper
Q-parabolic P. If Gder is Q-anisotropic, then any f is
trivially cuspidal!
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Constant term, cusp forms
(I) Simple exercises show that if fP = 0 for a proper Q-parabolic

P, then fQ = 0 for any Q-parabolic Q ⊂ P. Also, for γ ∈ Γ
we have fγ−1Pγ(g) = fP(γg).

(II) The next deep theorem shows that there are only finitely
many such vanishing conditions to check.

Theorem (Borel, Harish-Chandra) There are only finitely
many Q-parabolics of G up to Γ-conjugacy.

This has several serious inputs: a theorem of Borel-Tits
ensuring that up to G (Q)-conjugacy there are only finitely
many Q-parabolics in G , a theorem of Chevalley ensuring
that the normaliser of a parabolic is the parabolic itself, and
reduction theory (Borel-HC) which ensures that for any
Q-parabolic P the set Γ\G (Q)/P(Q) is finite (this set
classifies the G (Q)-conjugates of P up to Γ-conjugacy).
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The GPS theorem

(I) We can now state two fundamental theorems. We assume
that AG = 1 for both, so vol(Γ\G (R)) <∞.

Theorem (Gelfand, Piatetski-Shapiro) a) Any
f ∈ A (G , Γ)cusp is bounded, thus

A (G , Γ)cusp ⊂ L2(Γ\G (R))cusp.

b) For any α ∈ C∞c (G (R)) there is c > 0 such that

||f ∗ α||∞ ≤ c ||f ||L2 , ∀f ∈ L2(Γ\G (R))cusp.

The operator f → f ∗ α on L2(Γ\G (R))cusp is
Hilbert-Schmidt and L2(Γ\G (R))cusp has a discrete
decomposition.



The weak finiteness theorem

(I) See the end of the lecture for a sketch of the very technical
proof. We deduce now a weak form of the finiteness
theorem: the space

X = A (G , Γ)cusp[J, π1, ..., πr ]

of cusp forms of Z-type J and K -type π1, ..., πr is finite
dimensional. By Godement’s lemma and the GPS theorem
above it suffices to show that X is closed in L2(Γ\G (R)),
which, as for SL2, is highly nontrivial. Say fn ∈ X tend to
f ∈ L2(Γ\G (R)). Simple applications of Cauchy-Schwarz
show that f is of K -type π1, ..., πr .



The weak finiteness theorem

(I) Next, as for SL2 we interpret f as a distribution on G (R)
and we show that this distribution is killed by Z(g). The key
point is that U(g) has an anti-automorphism D → Ď such
that Ď = −D for D ∈ g and for f ∈ C∞(G (R)) and
ϕ ∈ C∞c (G (R))∫

G(R)
(D.f )(g)ϕ(g)dg =

∫
G(R)

(Ď.ϕ)(g)f (g)dg .

We win by Cauchy-Schwarz: f →
∫
G(R) Ď.ϕ(g)f (g)dg is

continuous for the L2 norm as Ď.ϕ ∈ Cc(G (R)).

(II) Now the distribution f is Z-finite and K -finite, thus by
elliptic regularity f is real analytic (up to a set of measure 0)
and killed by J.
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elliptic regularity f is real analytic (up to a set of measure 0)
and killed by J.



The weak finiteness theorem

(I) At this moment we can invoke harmonicity to get the
existence of α ∈ C∞c (G (R)) with f = f ∗ α. Since Γ is a
lattice in G (R), we have f ∈ L1(Γ\G (R)) and we get that f
has moderate growth via the next theorem, whose proof
identical to the case SL2 (the subtle counting lemma used
there is actually useless since Γ is arithmetic):

Theorem (first fundamental estimate) There is N such
that for any α ∈ C∞c (G )

sup
f ∈L1(Γ\G(R))K{0},x∈G(R)

|(f ∗ α)(x)|
||x ||N

<∞.



The weak finiteness theorem

(I) Finally, we need to prove that f is cuspidal. Pick a
Q-parabolic P, with unipotent radical N. Since fP is left
N(R)-invariant, it suffices to check that for any
ϕ ∈ Cc(N(R)\G (R)) we have∫

N(R)\G(R)
ϕ(g)fP(g) = 0.

Unfolding (using that f is left Γ-invariant) gives∫
N(R)\G(R)

ϕ(g)fP(g) =

∫
N(R)∩Γ\G(R)

ϕ(g)f (g)dg

=

∫
Γ\G(R)

f (g)H(g)dg ,whereH(g) =
∑

γ∈N(R)∩Γ\Γ

ϕ(γg).

(II) But one checks that H is bounded (easy exercise), so
f →

∫
Γ\G(R) f (g)H(g)dg is continuous for the L2 norm and

fP = 0.
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Iwasawa and Langlands decompositions

(I) In order to properly discuss the GPS theorem we need serious
and quite technical background. Let P be any Q-parabolic of
G , with unipotent radical N. Then the Levi quotient
LP = P/N of P is a connected reductive Q-group (P is
connected by a fundamental theorem of Chevalley).

(II) One can find a Q-Levi subgroup L of P, i.e. such that
L→ P → LP is an isomorphism (equivalently LN = P is a
semi-direct product). Indeed, there is λ ∈ Hom(Gm,G )Q
such that P = P(λ), and then one checks that the
centraliser of the image of λ is a Q-Levi subgroup.

(III) Pick such a Q-Levi subgroup L ⊂ P. Since P = LN is a
semi-direct product, we have

P(R) = L(R)N(R) = N(R)L(R), L(R) ' LP(R) '0 LP(R)×ALP .
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Iwasawa and Langlands decompositions

(I) The maximal compact K of G (R) is the fixed-point
subgroup of a Cartan involution θ of G (R). One shows that
there are unique subgroups AP ,MP of P(R) which are
conjugates of ALP ,

0 LP(R) and which are θ-stable.

(II) We obtain the Langlands decomposition of P

P(R) = N(R)APMP = N(R)MPAP

and the Iwasawa decomposition

G (R) = P(R)K = N(R)MPAPK .

In the last decomposition the AP -component of g ∈ G (R) is
uniquely determined and denoted a(g) ∈ AP .
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uniquely determined and denoted a(g) ∈ AP .



Relative root system

(I) From now on we fix a minimal Q-parabolic P in G , with
unipotent radical N. By Borel-Tits, all such P are
conjugate under G (Q), and the set of Q-parabolics
containing P is both finite and a set of representatives for
the G (Q)-conjugacy classes of Q-parabolics of G .

(II) Let S be a maximal Q-split torus of G contained in P and let

A = S(R)0, a = Lie(A),X (A) := Homcont
gr (A,R>0) ' a∗.

Don’t confuse these with AG ,X (AG ), aG !

(III) Then L = ZG (S) is a Q-Levi subgroup of P and the adjoint
representation of S in g gives rise to a a decomposition

g = Lie(L)⊕
⊕
a∈Φ

ga

for some finite set Φ ∈ X (S) K {0} ⊂ X (A) K {0}.
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g = Lie(L)⊕
⊕
a∈Φ

ga

for some finite set Φ ∈ X (S) K {0} ⊂ X (A) K {0}.



Relative root system

(I) The set Φ is called the relative root system of G with
respect to S because of the deep:

Theorem (Borel-Tits) Φ is a root system in the vector
space X (A/AG ) ⊂ X (A), and there is a system of positive
roots Φ+ ⊂ Φ such that

n := Lie(N) =
∑
a∈Φ+

ga.

Caution: contrary to the ”absolute” theory, the ga are not
necessarily 1-dimensional!



Siegel sets and reduction theory

(I) Recall the Langlands decomposition P(R) = N(R)MPAP ,
with AP a suitable conjugate of A, stable under the Cartan
involution of G attached to K . For t > 0 let

AP,t = {a ∈ AP | α(a) ≥ t ∀α ∈ Φ+}.

If ∆ = {α1, ..., αl} is the basis of Φ+, it is equivalent to ask
that αi (a) ≥ t for all i . If AG = 1, the αi form a basis of a∗.

(II) A Siegel set at P is a set of the form

Σ = ωAP,tK

with t > 0 and ω ⊂ N(R)MP a compact set.
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Siegel sets and reduction theory

(I) The next result is a vast (and very hard) generalisation of
reduction theory for SLn, seen last time:

Theorem (Borel, Harish-Chandra) There is a Siegel set Σ
at P and a finite set C ⊂ G (Q) such that Ω = CΣ is a good
approximation of Γ\G (R): G (R) = ΓΩ and there are only
finitely many γ ∈ Γ such that γΩ ∩ Ω 6= ∅.

Upshot: Γ\G (R) is covered by finitely many Siegel sets Σi ,
at representatives for the Γ-conjugacy classes of minimal
Q-parabolics of G .



Growth on Siegel sets

(I) From now on we assume that AG = 1 and we fix Siegel
sets Σi at various minimal parabolics Pi , covering
Γ\G (R). Recall that the AP -component a(g) of any
g ∈ G (R) = N(R)MPAPK is well-defined.

Theorem (Harish-Chandra) A map f ∈ C (Γ\G (R) has
moderate growth if and only if there are λi ∈ X (APi

) and
ci > 0 such that

|f (x)| ≤ ciλi (a(x)), x ∈ Σi .



Growth on Siegel sets

(I) To prove this one needs to establish three things (P = Pi for
some i):

• for any λ ∈ X (AP) there are c ,N such that λ(a) ≤ c||a||N
for a ∈ AP,t .

• there are c > 0 and λ ∈ X (AP) such that ||a|| ≤ cλ(a) for
a ∈ AP,t .

• there is c > 0 such that for all g ∈ Σi and γ ∈ Γ

||γg || ≥ c ||g ||.

The first two are relatively easy exercises, the last one is not
easy (but it’s a great exercise for GLn!).



Growth on Siegel sets

(I) For simplicity let’s assume that C = {1}, i.e. we have one
Siegel set Σ at our minimal Q-parabolic P covering Γ\G (R).
For λ ∈ X (AP) let Γ∞ = Γ ∩ N(R) and

||f ||λ = sup
x∈Σ
|f (x)|λ(x),

C∞(λ) = {f ∈ C∞(Γ∞\G (R))| ||D.f ||λ <∞ ∀D ∈ U(g)}.

Endow C∞(λ) with the semi-norms f → ||D.f ||λ for
D ∈ U(g).
By the above theorem, any automorphic form is in some
C∞(λ), since it has uniform moderate growth.



Second fundamental estimate

(I) The following theorem, really the heart of the story, allows
one to ”travel” between various C∞(λ) using constant terms
along maximal Q-parabolic subgroups of G . It is a vast
generalisation of the second fundamental estimate for SL2.

(II) The maximal Q-parabolics P1, ...,Pl containing P are
indexed by elements of ∆ = {α1, ..., αl} and we have
Pi = NiZG (S), with Ni normal in N, more precisely,

Ni = exp(ni ), ni =
∑

β∈Φ+KSpan(∆K{αi})

gβ.
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Second fundamental estimate
(I) Consider the operator

πi : C∞(Γ∞\G (R))→ C∞(Γ∞\G (R)), πi (f ) = fPi
.

Theorem (Harish-Chandra) For λ ∈ X (AP), λ′ ∈ λ+ Rαi ,
f → f − πi (f ) induces a continuous operator

1− πi : C∞(λ)→ C∞(λ′).

The proof is quite similar to the case SL2, the difficulty
being that Ni (R) is not always abelian. But we can filter
Ni (R) by subgroups N j

i normalised by AP , with successive

quotients N j−1
i \N j

i ' R and AP acts on these quotients by
characters βj such that βj(a) ≥ cjαi (a) for a ∈ AP,t (for

some ci > 0). Also, Γ∞ ∩ N j
i is a co-compact lattice in N j

i .
We are then reduced to Fourier analysis on Z\R, as for SL2.



Second fundamental estimate

(I) Iterating, we deduce that
∏l

i=1(1− πi ) : C∞(λ)→ C∞(λ′)
is a continuous operator for any λ and λ′ (since our
assumption that AG = {1} ensures that the simple roots αi

span X (AP) ' a∗).

(II) But this operator is simply the identity on cusp forms, thus

A (G , Γ)cusp ⊂ C∞(λ′)

for any λ′ ∈ X (AP), i.e. cusp forms are rapidly decreasing, in
particular bounded on the Siegel set Σ and thus bounded on
G (R) = ΓΣ (recall that we’re assuming C = {1}). This
proves the first part of the GPS theorem.
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Second part of GPS

(I) Let’s prove now:

Theorem (Gelfand, Piatetski-Shapiro) For any
α ∈ C∞c (G (R)) there is c > 0 such that

||f ∗ α||∞ ≤ c ||f ||L2 , ∀f ∈ L2
cusp(Γ\G (R)).

The operator f → f ∗ α on L2
cusp(Γ\G (R)) is

Hilbert-Schmidt.

The first part implies the second one by the same (slightly
subtle due to the issue of the measurability of the kernel)
argument as for SL2: it implies that f → f ∗ α is a kernel
operator, the kernel being square integrable.



Second part of GPS

(I) Set ϕ = f ∗ α, then for any proper Q-parabolic P we have

ϕP = fP ∗ α = 0

since f is cuspidal. Thus ϕ is cuspidal as well. Moreover, by
the first fundamental estimate we have for all D ∈ U(g) (and
a suitable N, independent of D and f )

|Dϕ(x)| = |f ∗ (D.α)(x)| ≤ cD ||x ||N ||f ||L1 ≤ c ′D ||x ||N ||f ||L2 ,

the last one by Cauchy-Schwarz (introducing an absolute
constant depending on Γ,G ).

(II) Thus there is λ ∈ X (AP) such that ϕ ∈ C∞(λ). Since ϕ is
cuspidal and the inclusion C∞(λ)cusp → C∞(0) is
continuous, we immediately get the result thanks to the
above estimate.



Second part of GPS

(I) Set ϕ = f ∗ α, then for any proper Q-parabolic P we have

ϕP = fP ∗ α = 0

since f is cuspidal. Thus ϕ is cuspidal as well. Moreover, by
the first fundamental estimate we have for all D ∈ U(g) (and
a suitable N, independent of D and f )

|Dϕ(x)| = |f ∗ (D.α)(x)| ≤ cD ||x ||N ||f ||L1 ≤ c ′D ||x ||N ||f ||L2 ,

the last one by Cauchy-Schwarz (introducing an absolute
constant depending on Γ,G ).

(II) Thus there is λ ∈ X (AP) such that ϕ ∈ C∞(λ). Since ϕ is
cuspidal and the inclusion C∞(λ)cusp → C∞(0) is
continuous, we immediately get the result thanks to the
above estimate.



Second part of GPS

(I) At this point we ”proved” the finiteness theorem for the
cuspidal part. Next time we’ll bootstrap this to the whole
automorphic space, by a rather subtle inductive argument.


