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Goal

(I) In this lecture we will explain a series of deep relations
between unimodular lattices in euclidean spaces, modular
forms and adelic groups. Absolutely beautiful references are
the book of Serre ”A Course in Arithmetic”, and (much
more advanced) the book of Chenevier-Lannes ”Automorphic
forms and even unimodular lattices”.



Unimodular lattices

(I) A unimodular quadratic lattice of rank n is a free
Z-module L of rank n together with a symmetric bilinear
pairing L2 → Z, (x , y)→ x•y which is perfect, i.e. the
induced map

L→ Hom(L,Z)

is bijective. In terms of matrices, if

A = (ei •ej)1≤i ,j≤n

is the Gram matrix associated to a basis e1, ..., en of L, then
perfectness is equivalent to detA ∈ {−1, 1}.

(II) There is an obvious notion of isomorphism between
quadratic lattices. In terms of matrices this means replacing
A by TBAB for some B ∈ GLn(Z).
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Nice lattices

(I) Let Ln be the set of nice lattices, i.e. unimodular quadratic
lattices (L, q) of rank n (with q(x) = x•x) such that

• q is positive definite

• L is even, i.e. q(L) ⊂ 2Z.

(II) If 8 | n then one easily checks that En ∈ Ln, where

En = {x ∈ Zn| 2 | x1 + ...+ xn}+ Z•(
1

2
,

1

2
, ...,

1

2
)

with the standard inner product. Zn is never nice (sic!).



Nice lattices

(I) Let Ln be the set of nice lattices, i.e. unimodular quadratic
lattices (L, q) of rank n (with q(x) = x•x) such that

• q is positive definite

• L is even, i.e. q(L) ⊂ 2Z.

(II) If 8 | n then one easily checks that En ∈ Ln, where

En = {x ∈ Zn| 2 | x1 + ...+ xn}+ Z•(
1

2
,

1

2
, ...,

1

2
)

with the standard inner product. Zn is never nice (sic!).



Theta functions

(I) Let L ∈ Ln and let rL(m) be the number of x ∈ L for which
q(x) = x•x = 2m, a finite number since q is positive definite.

(II) The theta function of L (with q = e2iπz , z ∈H )

ΘL(z) =
∑
x∈L

qx•x/2 =
∑
m≥0

rL(m)qm

is a 1-periodic holomorphic function on H , since
rL(m) = O(mn/2).
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Theta functions
(I) Here is a key result:

Theorem Suppose that Ln 6= ∅ and let L ∈ Ln. Then 8 | n
and ΘL ∈ Mn/2(SL2(Z)).

First, we prove that

ΘL(−1/z) = (−iz)n/2ΘL(z).

It suffices to check it for z = it with t > 0, i.e. we want∑
x∈t−1/2L

f (x) = tn/2
∑

x∈t1/2L

f (x),

with f (x) = e−πx•x . A standard computation (reduce to
dimension 1 via a ON-basis of L⊗ R) shows that f̂ = f ,
where

f̂ (y) =

∫
L⊗R

e−2iπx•y f (x)dx .



Theta functions

(I) The trace formula (i.e. Poisson summation) applied to the
compact quotient (L⊗ R)/(t1/2L) easily yields the result:
t−1/2L is dual to t1/2L and the co-volume of t1/2L is tn/2.

(II) To finish the proof of the theorem, it suffices to check that
8 | n. Replacing L by L⊕ L or L⊕4 we may assume that 4 | n
and 8 does not divide n. Then by what we’ve just proved

ω(z) = ΘL(z)dzn/4

satisfies S∗(ω) = −ω and T ∗(ω) = ω (where S : z → −1/z
and T : z → z + 1), thus (ST )∗ω = −ω, impossible since
(ST )3 = 1 and ω 6= 0.
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Applications

(I) Looking at constant terms we get, with k = n/4

ΘL − Ek ∈ Sn/2 := Sn/2(SL2(Z)).

Hecke’s trivial bound and the q-expansion of Ek give

rL(m) =
4k

Bk
σ2k−1(m) + O(mk), k = n/4,

where the Bernoulli numbers are defined by

x

ex − 1
= 1− x

2
+
∑
k≥1

(−1)k+1Bk
x2k

(2k)!
.

(II) For n = 8 we have S4 = 0 so ΘL = E2 and
rΓ(m) = 240σ3(m). Mordell proved that any such L is
isomorphic to E8. For n = 16 we get ΘL = E4 and
rL(m) = 480σ7(m).



Applications

(I) Looking at constant terms we get, with k = n/4

ΘL − Ek ∈ Sn/2 := Sn/2(SL2(Z)).

Hecke’s trivial bound and the q-expansion of Ek give

rL(m) =
4k

Bk
σ2k−1(m) + O(mk), k = n/4,

where the Bernoulli numbers are defined by

x

ex − 1
= 1− x

2
+
∑
k≥1

(−1)k+1Bk
x2k

(2k)!
.

(II) For n = 8 we have S4 = 0 so ΘL = E2 and
rΓ(m) = 240σ3(m). Mordell proved that any such L is
isomorphic to E8. For n = 16 we get ΘL = E4 and
rL(m) = 480σ7(m).



Applications

(I) Witt proved that there are exactly two such L (up to
isomorphism), namely E8 ⊕ E8 and E16. These give rise to
non-isomorphic iso-spectral tori (Milnor).

(II) For n = 24 letting

∆ = q
∏
n

(1−qn)24 =
∑

τ(n)qn, E6 = 1+
65520

691

∑
σ11(n)qn,

M12(SL2(Z)) = CE6 ⊕ C∆, thus ∃cL ∈ Q such that

rL(m) =
65520

691
σ11(m) + cLτ(m).

Conway and Leech proved that there is a unique such L with
rL(1) = 0, the famous Leech lattice. Hence

rLeech(m) =
65520

691
(σ11(m)−τ(m)), τ(m) ≡ σ11(m) (mod 691),

a famous Ramanujan congruence.
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Counting nice lattices

(I) Let
Xn = Ln/ ' .

We’ve just seen that Xn 6= ∅ iff 8 | n, and |X8| = 1, |X16| = 2.
We’ll see that Xn is finite. The next result is much deeper:

Theorem (Niemeier, King) We have |X24| = 24 and
|X32| > 109.

|Xn| has a very beautiful group-theoretic and adelic
description, which requires some preliminary discussion.



Brief recollections on adèles

(I) Recall that the ring of adèles A is locally compact and Q is a
co-compact lattice in it. An element of A is a family (av )v
indexed by places v of Q (i.e. primes or ∞) with av ∈ Qv

and av ∈ Zv for almost all v . We have

A = R× Af , Af = Q⊗Z Ẑ, Ẑ =
∏
p

Zp.

(II) For any Q-group G with a Z-model G , the topological group
G (A) consists of (gv )v with gv ∈ G (Qv ) and gv ∈ G (Zv ) for
almost all v . The group G (A) contains G (Q) as a discrete
subgroup. If G is semi-simple over Q, then G (Q) is a lattice
in G (A) (co-compact if and only if G is anisotropic over Q),
by the Borel and Borel-Harish-Chandra theorem.
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Class numbers of algebraic groups

(I) Let G ⊂ GLn(C) be a connected Q-group. The next
theorem is quite deep: applied to G = (F ⊗Q C)×, with F a
number field, this gives the finiteness of the class number of
F .

Theorem (Borel) The set G (Q)\G (Af )/G (Ẑ) is finite.

The class number of G is

cl(G ) = |G (Q)\G (Af )/G (Ẑ)|.

Be careful that it depends on the choice of the embedding
G ⊂ GLn(C) since G (Ẑ) depends on that.



Class number of GLn and SLn

(I) As an amuse-bouche, let’s prove in two ways the following:

Theorem We have cl(GLn) = 1 and cl(SLn) = 1.

It suffices to check that cl(G ) = 1, where G = SLn, and this
would follow from the density of G (Q) in G (Af ): since G (Ẑ)
is open in G (Af ), any G (Ẑ)-orbit will intersect G (Q) and
thus G (Af ) = G (Q)G (Ẑ).

(II) Let H be the closure of G (Q) in G (Af ). Then H contains
G (Qv ) for any v : any g ∈ G (Qv ) is a product of elementary
matrices, and Q is dense in Qv . Also H is closed in G (Af ),
thus it contains

∏
v∈S G (Qv )×

∏
v /∈S G (Zv ) for any finite

set S . But then H contains the union of these over all S ,
which is G (Af ).
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Local-global principle for lattices

(I) The second proof is based on the next key result. Let V be a
finite dimensional Q-vector space and let Vp = V ⊗Q Qp.
Let L (V ) be the set of lattices in V . Define L (Vp)
similarly. There is a natural map

L (V )→
∏
p

L (Vp), L→ (Lp := L⊗Z Zp)p.

Theorem (Eichler) Fix a lattice L0 ⊂ V . The above map
induces a bijection between

L (V ) '
′∏
p

L (Vp) :=

{(Lp)p ∈
∏
p

L (Vp)| Lp = L0 ⊗ Zp for almost all p}.



Local-global principle for lattices

(I) Pick a basis of L0 and identify it with Zn, and V with Qn. If
L ∈ L (V ), there is an integer N ≥ 1 such that
1
NZ

n ⊂ L ⊂ NZn. Thus Lp = Zn
p inside Vp = Qn

p for all p

prime to N. Thus the map factors through
∏′

p L (Vp).

(II) An easy exercise shows that for any lattice L we have
L = ∩pLp (with Lp = L⊗ Zp) inside V ⊗ Af , giving
injectivity. Using this recipe one also obtains an inverse of
the map L→ (Lp)p, namely (Lp)p → ∩p(Lp ∩ V ).
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Local-global principle for lattices

(I) Take V = Qn and L0 = Zn. Then GLn(Af ) '
∏′

p GL(Vp)

acts transitively on
∏′

p L (Vp), by (gp)p•(Lp)p = (gp(Lp))p,

the stabiliser of (Zn
p)p being GLn(Ẑ). Thus we obtain an

identification

GLn(Af )/GLn(Ẑ) ' L (V ) ' GLn(Q)/GLn(Z),

giving GLn(Af ) = GLn(Q)GLn(Ẑ) and cl(GLn) = 1.



Nice lattices and class numbers

(I) Fix n multiple of 8 and L0 ∈ Ln. Let G = O(L0) be the
orthogonal group of L0, a group defined over Z, with G (A)
the automorphism group of the quadratic A-module L0 ⊗ A
for any A.

Theorem There is a natural bijection

Xn → G (Q)\G (Af )/G (Ẑ),

thus |Xn| = cl(G ).

In particular Xn is finite by Borel’s theorem (we will see a
different argument later on).



Nice lattices and class numbers

(I) A key input in the proof of the previous theorem is the
following nontrivial result, using the classification of
quadratic forms over Zp:

Theorem Any two lattices in Ln become isomorphic over
Zp for any prime p and thus (by the Hasse-Minkowski
theorem) also over Q.

(II) Now pick L ∈ Ln and choose isomorphisms
γ : L⊗Q→ L0 ⊗Q and γv : L⊗ Zv → L0 ⊗ Zv . Then
γ ◦ γ−1

v ∈ Aut(L0 ⊗Qv ) = G (Qv ) for all v , and they belong
to G (Zv ) for almost all v .
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Nice lattices and class numbers

(I) We obtain an element g = (γ ◦ γ−1
v )v ∈ G (A). Changing γ

multiplies g on the left by an element of G (Q), and
changing γv multiplies g on the right by an element of
G (Ẑv ) (resp. G (R)), thus the class of g in

G (Q)\G (A)/G (Ẑ× R) ' G (Q)\G (Af )/G (Ẑ)

is well-defined, and only depends on the isomorphism class of
L, giving a map

Xn → G (Q)\G (Af )/G (Ẑ).

(II) In the other direction, for any g ∈ G (Af ) we can use the
action of G (Af ) ⊂ GL(L0 ⊗ Af ) on lattices in L0 ⊗Q to get
a lattice L′ = g(L0) ⊂ L0 ⊗Q. One easily checks that
L′ ∈ Ln and its isomorphism class depends only on the class
of g in G (Q)\G (Af )/G (Ẑ). An easy exercise shows that
these constructions are inverse to each other.
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The mass formula

(I) Here is one of the most amazing formulae in mathematics. It
gives the cardinality of Xn, ”if we count correctly”. Let
v(Sd−1) = 2πd/2/Γ(d/2) (volume of the sphere).

Theorem (Smith-Minkowski-Siegel) For any n ∈ 8Z>0∑
L∈Xn

1

|Aut(L)|
= 2ζ(n/2)

ζ(2)ζ(4)...ζ(n − 2)

v(S0)v(S1)...v(Sn−1)
.

The theorem implies (exercise, using that |Aut(L)| ≥ 2) the
existence of c > 0 such that for 8 | n we have |Xn| > (cn)n

2
.

One can also write (exercise!)

∑
L∈Xn

1

|Aut(L)|
= 2−n

Bn/4

n/4

n/2−1∏
j=1

Bj

j
.



The mass formula

(I) This formula is deeply related to adelic harmonic analysis!
Pick a decomposition

G (Af ) =
h∐

i=1

G (Q)giG (Ẑ)

and let Li ∈ Xn be the lattice corresponding to the class of
gi . We can compute the (finite) automorphism group of Li
by looking at those g ∈ G (Q) = Aut(L0 ⊗Q) which stabilise
Li ⊗ Zp for all p. We get

Aut(Li ) = giKg
−1
i ∩ G (Q), K := G (R)× G (Ẑ).

(II) We have a decomposition (send gAut(Li ) to the class of
(g , gi ) for g ∈ G (R))

G (Q)\G (A)/G (Ẑ) '
h∐

i=1

Aut(Li )\G (R).
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(II) We have a decomposition (send gAut(Li ) to the class of
(g , gi ) for g ∈ G (R))

G (Q)\G (A)/G (Ẑ) '
h∐

i=1

Aut(Li )\G (R).



The mass formula

(I) Picking compatible Haar measures µ on G (Af ), G (Ẑ) and
G (R) we have (note that G (R) is compact)

µ(G (Q)\G (A))

µ(G (Ẑ))
= µ(G (R))

h∑
i=1

1

|Aut(Li )|
,

thus

Theorem For any n multiple of 8 we have∑
L∈Xn

1

|Aut(L)|
=

µ(G (Q)\G (A))

µ(G (R)× G (Ẑ))

for any Haar measure µ on G (A).

(II) We next explain, following Tamagawa and Weil, how to
construct canonical Haar measures on semisimple Q-groups
(one can extend this to all Q-groups, with extra work).
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Measures and differential forms

(I) Let v be a place of Q and let X be a smooth variety of
dimension n over Qv . The smoothness of X implies (via the
implicit function theorem) that X (Qv ) has a natural
structure of manifold, algebraic local coordinates at points of
X (Qv ) giving rise to analytic charts around that point. Any
algebraic differential n-form ω on X (defined over Qv ) gives
rise to a measure on X (Qv ), as follows.

(II) Pick x ∈ X (Qv ) and local coordinates t1, ..., tn near x (i.e.
t1, ..., tn generate the maximal ideal of the local ring at x).
The ti define a chart around x and we can express in this
chart ω = g(t1, ..., tn)dt1 ∧ ... ∧ dtn for some power series g
in t1, ..., tn, convergent on some ball around 0.
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Measures and differential forms

(I) The measure |g(t1, ..., tn)|vdt1...dtn (where dt1...dtn is the
usual Haar measure on Qn

v , Lebesgue measure if v =∞ and
giving Zn

v mass 1 if v <∞) is independent of the choice of
local coordinates (exchange coordinates one at a time and
use Fubini to reduce to the case n = 1, which is elementary)
and compatible with restriction to smaller open subsets
around x . These measures glue to a measure |ω| on X (Qv ).

Theorem (Weil) If X has a smooth model X over Zp and
if ω is the restriction of a nowhere vanishing n-form on X ,
then ∫

X (Zp)
|ω| =

|X (Fp)|
pdimX

.



Measures and differential forms

(I) There is a natural surjective (by smoothness) reduction map

red : X (Zp)→X (Fp)

and one checks (using a suitable form of Hensel’s lemma and
local inversion theorem) that local coordinates around
a ∈X (Zp) give rise to an analytic isomorphism

(pZp)dimX ' red−1(red(a)).

With respect to these local parameters
ω = f (t1, ..., tn)dt1 ∧ ... ∧ dtn and |f (t1, ..., tn)| = 1 (since ω
is nowhere vanishing mod p), thus∫

red−1(red(a))
|ω| =

∫
(pZp)dim X

dt1...dtn = p− dimX .



The Tamagawa measure

(I) Let now G be a semisimple Q-group of dimension n. The
space Ωinv

G of left-invariant nowhere-vanishing n-forms on G
(defined over Q) is one-dimensional over Q. Any nonzero
ω ∈ Ωinv

G gives rise to measures |ωv | on G (Qv ) for any place
v of Q, by the above recipe applied to G as a smooth
Qv -variety. We want to define a measure on G (A) by

|ω| := ⊗v |ωv |,

but one needs serious care in implementing this.

(II) For some N ≥ 1 G has a smooth model G over Z[1/N], and
ω is induced by a nowhere-vanishing n-form on G . By Weil’s
theorem we have∏

gcd(p,N)=1

|ωp|(G (Zp)) =
∏

gcd(p,N)=1

|G (Fp)|
pn

.
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The Tamagawa measure
(I) A deep theorem of Steinberg (crucially using that G is

semisimple!) ensures that∏
gcd(p,N)=1

|G (Fp)|
pn

<∞.

For instance G = SLn we obtain∏
p

SLn(Fp)

pn2−1
=
∏
p

(1− p−n)(1− p1−n)...(1− p−2)

= ζ(2)−1ζ(3)−1...ζ(n)−1.

(II) We can now define a measure on G (A) as follows: for any M
multiple of N pick the measure on

∏
gcd(p,M)=1 G (Zp) with

total mass
∏

gcd(p,M)=1 |ωp|(G (Zp)) and use the product
measure on

∏
p|M G (Qp)× G (R).
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The Tamagawa measure

(I) This gives us measures on
G (R)×

∏
p|M G (Qp)×

∏
gcd(p,M)=1 G (Zp), which are

compatible when increasing M, thus we get a measure on
their union, which is G (A). The result, the Tamagawa
measure µTamG , is independent of any of the choices made,
in particular of the choice of ω (since |λωv | = |λ|v |ωv | and∏

v |λ|v = 1 for λ ∈ Q∗).

(II) What really matters in practice is that for any continuous
integrable functions fv on G (Qv ) with fv = 1G (Zv ) (for some
model G over some Z[1/N]) for almost all v , setting
f ((gv )v ) =

∏
v fv (gv ) gives a continuous integrable function

such that∫
G(A)

f (g)µTamG (g) =
∏
v

∫
G(Qv )

fv (gv )|ωv |(gv ).
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The Tamagawa measure

(I) Since G is semi-simple, G has no algebraic characters (it is
perfect!). Thus the (algebraic) action (right translation) of
G on Ωinv(G ) must be trivial and all such forms are left and
right invariant. Thus µTam is left and right invariant measure
on G (Af ), which is thus unimodular (and so are all G (Qv )).

(II) Since G is semi-simple, by the Borel-Harish-Chandra theorem
we know that

τ(G ) :=

∫
G(Q)\G(A)

µTamG (g)

is a real number (i.e. G (Q) is a lattice in G (A)) called the
Tamagawa number of G .
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The Tamagawa measure

(I) The proof of the next theorem occupies a big chunk of
Weil’s book Adèles and algebraic groups:

Theorem (Tamagawa-Weil) We have τ(SLn) = 1,
τ(SO(q)) = 2 for any non-degenerate quadratic form q over
Q and τ(SL1(D)) = 1 for any division algebra D over Q.

The equality τ(SO(q)) = 2 is equivalent to the mass formula
of Smith-Minkowski-Siegel when q is attached to an element
of Ln. For this one needs to compute the volume of
SO(q)(Ẑ× R), which reduces to computing |SO(q)(Fp)|
and the volume of SO(n)(R) (easily expressed inductively in
terms of volumes of spheres).
Kottwitz proved (using deep work of Langlands and Arthur
and many others) Weil’s conjecture: τ(G ) = 1 for any
connected, simply connected semi-simple group G over Q.



Reduction theory for GLn/Q

(I) Let G = GLn(C), K = O(n), A the subgroup of diagonal
matrices with positive entries, N the group of upper
triangular unipotent matrices in G (R).

(II) The Iwasawa decomposition (an easy exercise) says that
multiplication gives a homeomorphism (even diffeo)

K × A× N → G (R).

(III) For t > 0 let

At := {diag(a1, ..., an) ∈ A| max(a1/a2, a2/a3, ...) ≤ t}

and for u > 0 let Nu be the subset of matrices in N whose
off-diagonal entries belong to [−u, u]
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Reduction theory for GLn/Q

(I) Sets of the form
Σt,u = KAtNu

are called Siegel sets in G (R).

Theorem (Hermite, Minkowski) We have

G (R) = Σ2/
√

3,1/2G (Z).

Using this, it is a simple (but excellent!) exercise to deduce
the following basic result (already implicitly used...):

Theorem The set Xn is finite for all n.



Reduction theory for GLn/Q

(I) Write Gn = GLn(R), Γn = GLn(Z) and Σn = Σ2/
√

3,1/2. Let

||•|| be the euclidean norm with respect to the canonical
basis e1, ..., en of Rn. We will prove by induction on n that
minx∈gΓn ||xe1|| is reached in a point of Σn for any g ∈ Gn

(the min is reached since gΓn(e1) = g(Zn) is discrete), so
that gΓn intersects Σn.

(II) Say the claim is proved for n − 1 and let g = kan such that
||ge1|| = minx∈gΓn ||xe1||. First I claim that there is c̃ ∈ Γn

such that c̃e1 = e1 and the Iwasawa decomposition of g c̃ is

gc̃ = k̃

(
a1 0
0 a′′

)
ñ, ñ ∈ N1/2

a′′ = diag(a′′1 , ..., a
′′
n−1), a′′i /a

′′
i+1 ≤ 2/

√
3.
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Reduction theory for GLn/Q

(I) Indeed, writing a =

(
a1 0
0 a′

)
, n =

(
1 ∗
0 n′

)
, by induction

we can find c ′ ∈ Γn−1 such that a′n′c ′ = k ′′a′′n′′ ∈ Σn−1. A
direct computation exhibits an identity of the form

g

(
1 0
0 c ′

)
= k̃

(
a1 0
0 a′′

)(
1 ∗∗
0 n′′

)
.

But an easy induction shows that N = N1/2(Γn ∩ N), so we

can multiply

(
1 ∗∗
0 n′′

)
by an element of Γn ∩ N to make it

land in N1/2.

(II) Back to the main business: since c̃e1 = e1, we have
||g c̃e1|| = minx∈gc̃Γn ||xe1||, so we win by the following key
lemma applied to gc̃ :
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Reduction theory for GLn/Q

(I) Here’s the key lemma:

Lemma Say g = kan is such that ||ge1|| = minx∈gΓn ||xe1||.
There is n̄ ∈ N1/2 such that h := kan̄ ∈ gΓn and

||ge1|| = ||he1||. Moreover, a1/a2 ≤ 2/
√

3.

The proof is simple. Pick n̄ ∈ N1/2 such that n ∈ n̄(Γn ∩ N)
and set h = kan̄. Then ||ge1|| = ||ae1|| = a1 = ||he1||. Next,
if P is the matrix permuting e1, e2 and fixing e3, ..., we have

a1 = ||he1|| ≤ ||hPe1|| = ||he2|| = ||k(a1n̄12e1 + a2e2)||

=
√

a2
1n̄

2
12 + a2

2 ≤
√

a2
1/4 + a2

2

and we are done.



Proof of Mahler’s compactness criterion
(I) Recall the statement:

Theorem (Mahler’s compactness criterion) Let
M ⊂ GLn(R) be a subset such that for some c > 0 we have
det(g) ≥ c and infx∈ZnK{0} ||g−1x || ≥ c for g ∈ M. Then
the image of M in GLn(Z)\GLn(R) has compact closure.

Pick a sequence gj ∈ M and write g−1
j = kjajnjγj with

γj ∈ GLn(Z) and kjajnj ∈ Σ2/
√

3,1/2. It suffices to check
that the aj stay in a compact set, as then γjgj has a
convergent sub-sequence. But if aj = diag(a1

j , a
2
j , ...) the

condition on det g forces a1
j •a2

j •... to be bounded from

above, so it suffices to check that all akj stay away from 0.

This follows from a1
j /a

2
j ≤ 2/

√
3, ... and

c ≤ inf
x∈ZnK{0}

||g−1
j x || = inf

x
||ajnjx || ≤ ||ajnje1|| = a1

j .



SLn(Z) is a lattice in SLn(R)

(I) This also gives a simple proof that SLn(Z) is a lattice in
SLn(R). Let Σ1 = Σ2/

√
3,1/2 ∩ SLn(R), then one easily gets

SLn(R) = Σ1SLn(Z), so it suffices to show that Σ1 has
finite Haar measure.

(II) One has an Iwasawa decomposition SLn(R) = SOn(R)A0N
with A0 = A ∩ SLn(R) relative to which the Haar measure
on SLn(R) decomposes

dg =
∏
i<j

ai
aj
dk•da•dn.

Using this it’s a simple exercise to check that Σ1 has finite
Haar measure.
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The Tamagawa number of SLn

(I) We will sketch a rather geometric proof of τ(G ) = 1 for
G := SLn. Let ω be the unique (up to a sign) invariant
top-form on G , non-vanishing modulo any prime (exercise:
write down one!). Since cl(G ) = 1, we have

G (Q)\G (A)/G (Ẑ) ' G (Z)\G (R).

Since

vol(G (Ẑ)) =
∏
p

|ωp|(G (Zp)) =
∏
p

G (Fp)

pn2−1
= (ζ(2)...ζ(n))−1,

we are reduced to

vol(D) := |ω|∞(D) = ζ(2)...ζ(n)

for a fundamental domain D in G (R) with respect to the
action of G (Z).



The Tamagawa number of SLn

(I) Consider the standard invariant top-form on GLn

ωcan =
dx11 ∧ dx12 ∧ ... ∧ dxnn

det(xij)n
.

Its pullback by the product map m : SLn ×Gm → GLn is of
the form αω ∧ dt

t (t the coordinate on Gm) with α a
constant. One can find α by looking at what’s happening on
tangent spaces at (1, 1) and obtains α = ±n and

m∗(dx11 ∧ dx12 ∧ ... ∧ dxnn) = ±nω ∧ tn
2−1.

(II) Thus letting D1 = m(D × (0, 1]) = {tx | t ∈ (0, 1], x ∈ D} be
the cone with section D, we have∫
D1

|dx11∧dx12∧ ...∧dxnn| =

∫
D×(0,1]

n|ω|tn2−1dt =
vol(D)

n

and we need to show that

vol(D1) :=

∫
D1

|dx11 ∧ dx12 ∧ ... ∧ dxnn| =
ζ(2)...ζ(n)

n
.
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The Tamagawa number of SLn

(I) For this we count lattice points in expanded versions of D,
more precisely in DT := {td | t ∈ (0,T ], d ∈ D} for T →∞.
Note that vol(DT ) = T n2

vol(D1), so we need to estimate

vol(D1) = lim
T→∞

vol(DT )

T n2 = lim
T→∞

|DT ∩Mn(Z)|
T n2

(II) Since DT is a fundamental domain for
{X ∈ Mn(R)| 0 < detX ≤ T n} modulo G (Z), we obtain

vol(D1) = lim
T→∞

1

T n2

T n∑
k=1

ak ,

where ak is the number of matrices X ∈ Mn(Z) with
detX = k, modulo G (Z).
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The Tamagawa number of SLn

(I) However, ak is also the number of sub-lattices of Zn of index
k and a nice inductive argument based on elementary
divisors shows that∑

k≥1

ak
ks

= ζ(s)ζ(s − 1)...ζ(s − n + 1),

thus as s → 1∑
k≥1

ak
ks+n−1

= ζ(s)ζ(s+1)...ζ(s+n−1) ≈ ζ(2)...ζ(n)/(s−1).

(II) Suitable Tauberian theorems then yield

lim
x→∞

1

xn

∑
k≤x

ak =
ζ(2)...ζ(n)

n

and this finishes the proof.
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